mahout协同过滤算法
一直使用mahout的RowSimilarity来计算物品间的相似度,今晚仔细看了其实现,终于搞明白了他的计算逻辑。
上篇中介绍了整个itemBaseCF的mapreducer过程,主要有三个大的步骤吧,我把他称为prepare阶段,计算相似阶段和利用相似性计算推荐阶段。
prepare阶段主要完成的是矩阵转换变换以及统计一些相似及推荐时用到的一些属性。
第二阶段是计算相似性:有几个数据较为重要,如下所示。
- norms.bin:是用来存放所有用户对一个商品的平方和,数据存储为itemA:double
- numNonZeroEntries.bin:存放itemID对应的不为零的用户评分个数
- maxValues.bin:最大的那个用户评分
之后经过一次矩阵的转置以userID为行itemID为列,计算一个用户评分过的所有商品的乘积,(一个自循环计算其与其他商品评分的乘积)
接下来就是计算相似度了,以欧氏距离为例:d = sqrt( (x1-x2)x1+(y1-y2)^2+(z1-z2)^2 )...三维空间中的算法
他是和x12+x22+y12+y22+z12+z22-2(x1*x2+y1*y2+z1*z2)...同理扩展到多维空间中,而mahout中的相似度算法就是这么搞的,先统计所有用户对此商品(A)的评分的平方和,然后在计算所有用户对此商品(A)与要计算相似的商品(B)的所有乘积之和,这样计算相似时直接获取以上结果,也就是平方和减去2倍的乘积之和,再开方。最后转化成相似的表示形式【1/(1+d)】。完成相似度的计算。
太晚了明天继续预测评分。
====================================================================================================================
接着昨天的,下面是预测评分。
经过前面两步的工作已经将以user为key的矩阵写入userVectors目录下,而相似矩阵也已经有了,下面应该是将用户A已经评过分的商品的相似商品找出来,这些就应该是要推荐的备选商品了。现在要根据相似度预测备选商品的评分了。
- 利用相似矩阵和用户的评分数据,得到以下形式的数据结构:
user1 | pref1 | similarityColumn1 |
user1 | pref2 | similarityColumn2 |
user2 | ... | ... |
在程序里也就是以userID为key,value为PrefAndSimilarityColumnWritable的Vector,这样就得到,某个用户评过分的商品评分和与其相似的商品的矩阵,这些就是为此用户做推荐的备选商品。下一步就是预测这些商品的评分,有个细节就是在此就已经过滤掉此用户已经评过分的商品,也就是预测评分时评过分的商品不会出现在推荐列表中,以上图第一行为例,mahout是采用将similarityColumn1中pref1评分的商品的相似度设置为Double.NAN,这很巧妙,NAN的话以后进行任何计算得出的结果都是NAN,也就不会出现在最后的推荐列表中了。预测评分采用的也是简单(相似向量*评分再做加权)/(相似向量加权),mahout为了减少预测次数,他是只预测某个商品在这些similarityColumn的中出现两次以上的。
最后的推荐列表是推预测的商品做个倒排序,推荐列表就生成了。
mahout协同过滤算法的更多相关文章
- mahout协同过滤算法各接口
Mahout协同过滤算法 Mahout使用了Taste来提高协同过滤算法的实现,它是一个基于Java实现的可扩展的,高效的推荐引擎.Taste既实现了最基本的基于用户的和基于内容的推荐算法,同时也提供 ...
- 012_流式计算系统(Mahout协同过滤)
课程介绍 课程内容 1.Mahout是什么 l Mahout是一个算法库,集成了很多算法. l Apache Mahout 是 Apache Software Foundation(ASF)旗下的 ...
- Mahout实现基于用户的协同过滤算法
Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法. 基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐. 图片来源 程序 ...
- win7下使用Taste实现协同过滤算法
如果要实现Taste算法,必备的条件是: 1) JDK,使用1.6版本.需要说明一下,因为要基于Eclipse构建,所以在设置path的值之前要先定义JAVA_HOME变量. 2) Maven,使用2 ...
- SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:
- GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法
GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...
- Spark机器学习之协同过滤算法
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...
- Collaborative Filtering(协同过滤)算法详解
基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户 ...
- 【机器学习笔记一】协同过滤算法 - ALS
参考资料 [1]<Spark MLlib 机器学习实践> [2]http://blog.csdn.net/u011239443/article/details/51752904 [3]线性 ...
随机推荐
- Javaweb实现的优优图书商城(含源码)
原文地址:http://www.cnblogs.com/liaoyu/p/uushop.html 源码地址:https://github.com/liaoyu/uushop 贴出一个大学时做的小项目, ...
- PHP程序员的40点陋习,我几乎全部中枪
1.不写注释 2.不使用可以提高生产效率的IDE工具 3.不使用版本控制 4.不按照编程规范写代码 5.不使用统一的方法 6.编码前不去思考和计划 7.在执行sql前不执行编码和安全检测 8.不使用测 ...
- 整理了一份招PHP高级工程师的面试题
1. 基本知识点 HTTP协议中几个状态码的含义:1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 100 (继续) 请求者应当继续提出请求. 服务器返回此代码 ...
- apk反编译(6)ProGuard 工具 android studio版官方教程[作用,配置,解混淆,优化示例]
ProGuard In this document Enabling ProGuard (Gradle Builds) Configuring ProGuard Examples Decoding O ...
- oracle 11g SQL Developer instead of isqlplus
Oracle11g的新工具SQL DEVELOPER,替代了 isqlplus 1.创建连接方式 2.SQL输入窗口 3.表的结构及其他信息查阅 4.SQL语句测试 5.创建表 6.用户授权 7.数据 ...
- Android动画 三种动画
Android可以使用三种动画 Frame Animation-帧动画 ,就像GIF图片,通过一系列Drawable依次显示来模拟动画的效果 Tween Animation-补间动画,给出两个关键帧, ...
- spring事务传播机制实例讲解
http://kingj.iteye.com/blog/1680350 spring事务传播机制实例讲解 博客分类: spring java历险 天温习spring的事务处理机制,总结 ...
- tranform-scale 缩小元素,移上去文字抖动
元素缩小后,鼠标移上去之后文字会出现抖动, -webkit-transform:scale(0.5); 修复代码如下: *{ -webkit-backface-visibility: hidden; ...
- Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum
题目链接 题意:一个m个面的骰子,抛掷n次,求这n次里最大值的期望是多少.(看样例就知道) 分析: m个面抛n次的总的情况是m^n, 开始m==1时,只有一种 现在增加m = 2, 则这些情况是新增 ...
- 函数buf_LRU_old_adjust_len
调整LUR_old位置,放到八分之五位置,是新的,后八分之三是旧的 512个页全变成新的,然后从后往前数,数到8分之3,设置为旧的 /********************************* ...