Critical Links 

In a computer network a link L, which interconnects two servers, is considered critical if there are at least two servers A and B such that all network interconnection paths between A and B pass through L. Removing a critical link generates two disjoint sub-networks such that any two servers of a sub-network are interconnected. For example, the network shown in figure 1 has three critical links that are marked bold: 0 -13 - 4 and 6 - 7.

Figure 1: Critical links

It is known that:

1.
the connection links are bi-directional;
2.
a server is not directly connected to itself;
3.
two servers are interconnected if they are directly connected or if they are interconnected with the same server;
4.
the network can have stand-alone sub-networks.

Write a program that finds all critical links of a given computer network.

Input

The program reads sets of data from a text file. Each data set specifies the structure of a network and has the format:

...

The first line contains a positive integer (possibly 0) which is the number of network servers. The next  lines, one for each server in the network, are randomly ordered and show the way servers are connected. The line corresponding to serverk, specifies the number of direct connections of serverk and the servers which are directly connected to serverk. Servers are represented by integers from 0 to . Input data are correct. The first data set from sample input below corresponds to the network in figure 1, while the second data set specifies an empty network.

Output

The result of the program is on standard output. For each data set the program prints the number of critical links and the critical links, one link per line, starting from the beginning of the line, as shown in the sample output below. The links are listed in ascending order according to their first element. The output for the data set is followed by an empty line.

Sample Input

8
0 (1) 1
1 (3) 2 0 3
2 (2) 1 3
3 (3) 1 2 4
4 (1) 3
7 (1) 6
6 (1) 7
5 (0) 0

Sample Output

3 critical links
0 - 1
3 - 4
6 - 7 0 critical links

模板题

需要按照顺序输出桥

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
/*
* 求 无向图的割点和桥
* 可以找出割点和桥,求删掉每个点后增加的连通块。
* 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
const int MAXN = ;
const int MAXM = ;
struct Edge
{
int to,next;
bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块
int bridge; void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
head[u] = tot++;
} void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
int son = ;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre)continue;
if( !DFN[v] )
{
son++;
Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
//割点
//一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
//(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
//即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
if(u != pre && Low[v] >= DFN[u])//不是树根
{
cut[u] = true;
add_block[u]++;
}
}
else if( Low[u] > DFN[v])
Low[u] = DFN[v];
}
//树根,分支数大于1
if(u == pre && son > )cut[u] = true;
if(u == pre)add_block[u] = son - ;
Instack[u] = false;
top--;
} void solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(add_block,,sizeof(add_block));
memset(cut,false,sizeof(cut));
Index = top = ;
bridge = ;
for(int i = ;i <= N;i++)
if( !DFN[i] )
Tarjan(i,i);
printf("%d critical links\n",bridge);
vector<pair<int,int> >ans;
for(int u = ;u <= N;u++)
for(int i = head[u];i != -;i = edge[i].next)
if(edge[i].cut && edge[i].to > u)
{
ans.push_back(make_pair(u,edge[i].to));
}
sort(ans.begin(),ans.end());
//按顺序输出桥
for(int i = ;i < ans.size();i++)
printf("%d - %d\n",ans[i].first-,ans[i].second-);
printf("\n");
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
//处理重边
map<int,int>mapit;
inline bool isHash(int u,int v)
{
if(mapit[u*MAXN+v])return true;
if(mapit[v*MAXN+u])return true;
mapit[u*MAXN+v] = mapit[v*MAXN+u] = ;
return false;
}
int main()
{
int n;
while(scanf("%d",&n) == )
{
init();
int u;
int k;
int v;
//mapit.clear();
for(int i = ;i <= n;i++)
{
scanf("%d (%d)",&u,&k);
u++;
//这样加边,要保证正边和反边是相邻的,建无向图
while(k--)
{
scanf("%d",&v);
v++;
if(v <= u)continue;
//if(isHash(u,v))continue;
addedge(u,v);
addedge(v,u);
}
}
solve(n);
}
return ;
}

UVA 796 - Critical Links (求桥)的更多相关文章

  1. Uva 796 Critical Links 找桥

    这个题很简单,但是输入有毒,用字符串的我一直RE 然后换成这样瞬间AC #include <stdio.h> #include <string.h> #include < ...

  2. Uva 796 Critical Links (割边+排序)

    题目链接: Uva 796 Critical Links 题目描述: 题目中给出一个有可能不连通的无向图,求出这个图的桥,并且把桥按照起点升序输出(还有啊,还有啊,每个桥的起点要比终点靠前啊),这个题 ...

  3. uva 796 Critical Links(无向图求桥)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 796 Critical Links(Tarjan求桥)

    题目是PDF就没截图了 这题似乎没有重边,若有重边的话这两点任意一条边都不是桥,跟求割点类似的原理 代码: #include <stdio.h> #include <bits/std ...

  5. UVA 796 Critical Links(无向图求桥)

    题目大意:给你一个网络要求这里面的桥. 输入数据: n 个点 点的编号  (与这个点相连的点的个数m)  依次是m个点的   输入到文件结束. 桥输出的时候需要排序   知识汇总: 桥:   无向连通 ...

  6. UVA 796 Critical Links(模板题)(无向图求桥)

    <题目链接> 题目大意: 无向连通图求桥,并将桥按顺序输出. 解题分析: 无向图求桥的模板题,下面用了kuangbin的模板. #include <cstdio> #inclu ...

  7. UVA 796 Critical Links —— (求割边(桥))

    和求割点类似,只要把>=改成>即可.这里想解释一下的是,无向图没有重边,怎么可以使得low[v]=dfn[u]呢?只要它们之间再来一个点即可. 总感觉图论要很仔细地想啊- -一不小心就弄混 ...

  8. UVA 796 - Critical Links 无向图字典序输出桥

    题目:传送门 题意:给你一个无向图,你需要找出里面的桥,并把所有桥按字典序输出 这一道题就是用无向图求桥的模板就可以了. 我一直错就是因为我在输入路径的时候少考虑一点 错误代码+原因: 1 #incl ...

  9. UVA 796 Critical Links (tarjan算法求割边)

    这是在kuangbin的题目里看到的,不得不吐槽一下,题目中居然没给出数据范围,还是我自己猜的-本来是一道挺裸的题,但是我wa了好多次,原因就是这里面有两个坑点,1重边特判,2输出时左边必须比右边小. ...

随机推荐

  1. struct dev_t

    device number(dev_t) linux driver 2009-08-21 10:08:03 阅读26 评论0 字号:大中小 dev_t description:     the dev ...

  2. Xml文件保存值不能及时更新

    今天在Xml文件中修改了一个值,调试时,发现读取的不是最新值.经过各种调试,还是不能解决.只好把文件项目给编译了一遍,在调试时,把在及时窗口,把变量值给改了一下啊,就是可以读到最新配置了.停止程序,在 ...

  3. SGU 441 Set Division(矩阵快速幂)

    题目链接:http://acm.sgu.ru/status.php 题意:将n个有区别的球放到m个无区别的盒子里,盒子不能为空.不同的方案数. 思路:设f[i][j]表示将前i个球放到j个盒子里,那么 ...

  4. Math.sqrt

    java.lang.Math.sqrt(double a) 返回正确舍入的一个double值的正平方根.特殊情况: 如果参数是NaN或小于为零,那么结果是NaN. 如果参数是正无穷大,那么结果为正无穷 ...

  5. LeetCode Reverse Linked List (反置链表)

    题意: 将单恋表反转. 思路: 两种方法:迭代和递归. 递归 /** * Definition for singly-linked list. * struct ListNode { * int va ...

  6. HTMLParser 解析HTML

    from html.parser import HTMLParser from html.entities import name2codepoint class MyHTMLParser(HTMLP ...

  7. 【 D3.js 高级系列 — 8.0 】 标线

    有时候,需要在地图上绘制连线,表示"从某处到某处"的意思,这种时候在地图上绘制的连线,称为"标线". 1. 标线是什么 标线,是指地图上需要两个坐标以上才能表示 ...

  8. django --------------------- [必要操作]

    基本models 命令: python manage.py validate (验证模型有效性, 记得配置 settings.py - INSTALLED_APPS) python manage.py ...

  9. 安装oracle XML Database 组件

    近期部署项目数据库,编译包时遇到错误:   PACKAGE CTG.CTG_CSB_COMMON 编译错误  错误:PLS-00201: identifier 'XMLDOM' must be dec ...

  10. Android 项目利用 Android Studio 和 Gradle 打包多版本APK

    在项目开发过程中,经常会有需要打包不同版本的 APK 的需求. 比如 debug版,release版,dev版等等. 有时候不同的版本中使用到的不同的服务端api域名也不相同. 比如 debug_ap ...