C. Table Compression

Little Petya is now fond of data compression algorithms. He has already studied gz, bz, zip algorithms and many others. Inspired by the new knowledge, Petya is now developing the new compression algorithm which he wants to name dis.

Petya decided to compress tables. He is given a table a consisting of n rows and m columns that is filled with positive integers. He wants to build the table a' consisting of positive integers such that the relative order of the elements in each row and each column remains the same. That is, if in some row i of the initial table ai, j < ai, k, then in the resulting table a'i, j < a'i, k, and if ai, j = ai, k then a'i, j = a'i, k. Similarly, if in some column j of the initial table ai, j < ap, j then in compressed table a'i, j < a'p, j and if ai, j = ap, j then a'i, j = a'p, j.

Because large values require more space to store them, the maximum value in a' should be as small as possible.

Petya is good in theory, however, he needs your help to implement the algorithm.

Input

The first line of the input contains two integers n and m (, the number of rows and the number of columns of the table respectively.

Each of the following n rows contain m integers ai, j (1 ≤ ai, j ≤ 109) that are the values in the table.

Output

Output the compressed table in form of n lines each containing m integers.

If there exist several answers such that the maximum number in the compressed table is minimum possible, you are allowed to output any of them.

Examples
Input
2 2
1
4
Output
1 2
2 3
Input
4 3
20 10 30
50 40 30
50 60 70
90 80 70
Output
2 1 3
5 4 3
5 6 7
9 8 7
Note

In the first sample test, despite the fact a1, 2 ≠ a21, they are not located in the same row or column so they may become equal after the compression.

题意:个数不超过1e6个数的二维数列;按照行与列数的相对大小尽可能的缩小为正整数,但不在同一行或同一列的数的缩放前后的大小没有关系;

输出缩放后的数列;

思路:排序后每次处理都是处理值相等的一串数据,并且是看成没没有填入到新数组中,这样使用并查集就可以得到“十”字形相等的根节点的最大值,即所有这棵并查集下的节点的值;x[i],y[i]来模拟并查集,X[],Y[]表示行列上一个值填到的数值,所以之后直接得到根节点所要填入的值;

#include<bits/stdc++.h>
using namespace std;
int i,j,k,n,m,T,tot;
const int N = ;
struct data{
int r,c,v,id;
}p[N];
bool cmp(const data &a,const data &b){return a.v < b.v;}
int f[N],X[N],Y[N],ans[N],x[N],y[N],tmp[N];
int Find(int a){return a==f[a]?f[a]:f[a]=Find(f[a]);}
int main()
{
scanf("%d%d",&n,&m);
for(i = ;i <= n;i++)
for(j = ;j <= m;j++){
scanf("%d",&p[++tot].v);
p[tot].r = i,p[tot].c = j;
p[tot].id = tot;
f[tot] = tot;
}
sort(p+,p++tot,cmp);
for(i = ;i <= tot;i = j){
for(j = i;p[i].v == p[j].v;++j);
for(k = i;k < j;k++){
int r = p[k].r, c = p[k].c;
if(!x[r]) x[r] = k;// 行并查
else f[Find(k)] = Find(x[r]);
if(!y[c]) y[c] = k;
else f[Find(k)] = Find(y[c]);//f[k]会因为十字型交叉而出错;
}
for(k = i;k < j;k++){//只是在之前的值的基础上得到,不是模拟填入值
int q = Find(k);
tmp[q] = max(tmp[q],max(X[p[k].r],Y[p[k].c])+);
}
for(k = i;k < j;k++){//根节点得到的是全体的值
x[p[k].r] = y[p[k].c] = ;
X[p[k].r] = Y[p[k].c] = ans[p[k].id] = tmp[Find(k)];
}
}
for(i = ;i <= tot;i++){
printf("%d ",ans[i]);
if(i%m == ) puts("");
}
}

codeforces Codeforces Round #345 (Div. 1) C. Table Compression 排序+并查集的更多相关文章

  1. Codeforces Round #345 (Div. 1) C. Table Compression dp+并查集

    题目链接: http://codeforces.com/problemset/problem/650/C C. Table Compression time limit per test4 secon ...

  2. Codeforces Round #345 (Div. 2) E. Table Compression(并查集)

    传送门 首先先从小到大排序,如果没有重复的元素,直接一个一个往上填即可,每一个数就等于当前行和列的最大值 + 1 如果某一行或列上有重复的元素,就用并查集把他们连起来,很(不)显然,处于同一行或列的相 ...

  3. Codeforces Round #345 (Div. 2) E. Table Compression 并查集

    E. Table Compression 题目连接: http://www.codeforces.com/contest/651/problem/E Description Little Petya ...

  4. Codeforces Round #345 (Div. 2) E. Table Compression 并查集+智商题

    E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces Round #345 (Div. 1) C. Table Compression (并查集)

    Little Petya is now fond of data compression algorithms. He has already studied gz, bz, zip algorith ...

  6. Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集 bfs

    F. Polycarp and Hay 题目连接: http://www.codeforces.com/contest/659/problem/F Description The farmer Pol ...

  7. Codeforces Round #181 (Div. 2) B. Coach 带权并查集

    B. Coach 题目连接: http://www.codeforces.com/contest/300/problem/A Description A programming coach has n ...

  8. Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集

    http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...

  9. Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集

    题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...

随机推荐

  1. 文件夹添加右键DOS快捷入口

    1.自带的方法 win7: 按住shift键然后右键点击文件夹,菜单里会出现“在此处打开命令窗口”一项,其实就相当于在当前位置打开Dos窗口,这个是系统自带的. winxp: 打开“我的电脑”,点击菜 ...

  2. TCP连接的建立与关闭

    TCP是主机对主机层的传输控制协议:建立连接要三个握手,断开连接要四次挥手. 位码即TCP标志位,有6种标示:SYN(synchronous建立联机),ACK(acknowledgement 确认), ...

  3. Visual Studio dte 获取代码方法注释

  4. 【Fibonacci】BestCoder #28B Fibonacci

    Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. css扁平化博客学习总结(三)header代码实现

    页头.banner.正文.页脚的宏观布局 1.布局顺序的重要性: 由大到小,着眼最大的部分,慢慢细分. <body> <header><!-- 页头开始 --> & ...

  6. Mongodb集群节点故障恢复场景分析

    http://blog.csdn.net/zhangzhaokun/article/details/6299527 一个适当配置的Mongodb分片集群是没有单点故障. 本文描述了分片集群中存在的几种 ...

  7. Android带头像的用户注册页面

    详细的图文可以到我的百度经验去查看:http://jingyan.baidu.com/article/cd4c2979eda109756e6e60de.html 首先是注册页面的布局: <?xm ...

  8. XML文件的解析方式

    XML文件4种解析方式分别是:DOM解析,SAX解析,JDOM解析,DOM4J解析.1.基础方法:DOM:与平台无关的官方的解析方式.SAX:Java平台提供的基于事件驱动的解析方式.2.扩展方法(在 ...

  9. 第六篇、git常用的命令

    1.oscine git服务器地址 https://git.oschina.net/ 2.帐号:18775134221@163.com 密码:562011 3.创建私有的仓库 4.使用命令 4.1 配 ...

  10. ios 单例模式(懒汉式)

    1. 单例模式的作用 可以保证在程序运行过程,一个类只有一个实例,而且该实例易于供外界访问 从而方便地控制了实例个数,并节约系统资源 2. 单例模式的使用场合 在整个应用程序中,共享一份资源(这份资源 ...