C. Table Compression

Little Petya is now fond of data compression algorithms. He has already studied gz, bz, zip algorithms and many others. Inspired by the new knowledge, Petya is now developing the new compression algorithm which he wants to name dis.

Petya decided to compress tables. He is given a table a consisting of n rows and m columns that is filled with positive integers. He wants to build the table a' consisting of positive integers such that the relative order of the elements in each row and each column remains the same. That is, if in some row i of the initial table ai, j < ai, k, then in the resulting table a'i, j < a'i, k, and if ai, j = ai, k then a'i, j = a'i, k. Similarly, if in some column j of the initial table ai, j < ap, j then in compressed table a'i, j < a'p, j and if ai, j = ap, j then a'i, j = a'p, j.

Because large values require more space to store them, the maximum value in a' should be as small as possible.

Petya is good in theory, however, he needs your help to implement the algorithm.

Input

The first line of the input contains two integers n and m (, the number of rows and the number of columns of the table respectively.

Each of the following n rows contain m integers ai, j (1 ≤ ai, j ≤ 109) that are the values in the table.

Output

Output the compressed table in form of n lines each containing m integers.

If there exist several answers such that the maximum number in the compressed table is minimum possible, you are allowed to output any of them.

Examples
Input
2 2
1
4
Output
1 2
2 3
Input
4 3
20 10 30
50 40 30
50 60 70
90 80 70
Output
2 1 3
5 4 3
5 6 7
9 8 7
Note

In the first sample test, despite the fact a1, 2 ≠ a21, they are not located in the same row or column so they may become equal after the compression.

题意:个数不超过1e6个数的二维数列;按照行与列数的相对大小尽可能的缩小为正整数,但不在同一行或同一列的数的缩放前后的大小没有关系;

输出缩放后的数列;

思路:排序后每次处理都是处理值相等的一串数据,并且是看成没没有填入到新数组中,这样使用并查集就可以得到“十”字形相等的根节点的最大值,即所有这棵并查集下的节点的值;x[i],y[i]来模拟并查集,X[],Y[]表示行列上一个值填到的数值,所以之后直接得到根节点所要填入的值;

#include<bits/stdc++.h>
using namespace std;
int i,j,k,n,m,T,tot;
const int N = ;
struct data{
int r,c,v,id;
}p[N];
bool cmp(const data &a,const data &b){return a.v < b.v;}
int f[N],X[N],Y[N],ans[N],x[N],y[N],tmp[N];
int Find(int a){return a==f[a]?f[a]:f[a]=Find(f[a]);}
int main()
{
scanf("%d%d",&n,&m);
for(i = ;i <= n;i++)
for(j = ;j <= m;j++){
scanf("%d",&p[++tot].v);
p[tot].r = i,p[tot].c = j;
p[tot].id = tot;
f[tot] = tot;
}
sort(p+,p++tot,cmp);
for(i = ;i <= tot;i = j){
for(j = i;p[i].v == p[j].v;++j);
for(k = i;k < j;k++){
int r = p[k].r, c = p[k].c;
if(!x[r]) x[r] = k;// 行并查
else f[Find(k)] = Find(x[r]);
if(!y[c]) y[c] = k;
else f[Find(k)] = Find(y[c]);//f[k]会因为十字型交叉而出错;
}
for(k = i;k < j;k++){//只是在之前的值的基础上得到,不是模拟填入值
int q = Find(k);
tmp[q] = max(tmp[q],max(X[p[k].r],Y[p[k].c])+);
}
for(k = i;k < j;k++){//根节点得到的是全体的值
x[p[k].r] = y[p[k].c] = ;
X[p[k].r] = Y[p[k].c] = ans[p[k].id] = tmp[Find(k)];
}
}
for(i = ;i <= tot;i++){
printf("%d ",ans[i]);
if(i%m == ) puts("");
}
}

codeforces Codeforces Round #345 (Div. 1) C. Table Compression 排序+并查集的更多相关文章

  1. Codeforces Round #345 (Div. 1) C. Table Compression dp+并查集

    题目链接: http://codeforces.com/problemset/problem/650/C C. Table Compression time limit per test4 secon ...

  2. Codeforces Round #345 (Div. 2) E. Table Compression(并查集)

    传送门 首先先从小到大排序,如果没有重复的元素,直接一个一个往上填即可,每一个数就等于当前行和列的最大值 + 1 如果某一行或列上有重复的元素,就用并查集把他们连起来,很(不)显然,处于同一行或列的相 ...

  3. Codeforces Round #345 (Div. 2) E. Table Compression 并查集

    E. Table Compression 题目连接: http://www.codeforces.com/contest/651/problem/E Description Little Petya ...

  4. Codeforces Round #345 (Div. 2) E. Table Compression 并查集+智商题

    E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces Round #345 (Div. 1) C. Table Compression (并查集)

    Little Petya is now fond of data compression algorithms. He has already studied gz, bz, zip algorith ...

  6. Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集 bfs

    F. Polycarp and Hay 题目连接: http://www.codeforces.com/contest/659/problem/F Description The farmer Pol ...

  7. Codeforces Round #181 (Div. 2) B. Coach 带权并查集

    B. Coach 题目连接: http://www.codeforces.com/contest/300/problem/A Description A programming coach has n ...

  8. Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集

    http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...

  9. Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集

    题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...

随机推荐

  1. CSS字体大小设置时的参考(转)

    from:http://blog.sina.com.cn/s/blog_51cd580b0100gg6y.html font-size 设置的绝对关键字: 以下几个绝对字体大小的设置是有效的.当然他们 ...

  2. Apache Rewrite 服务器变量

    Apache提供给rewirte模块的环境变量大概分成5个类型. 第一部分: HTTP headers 部分参数 参数名称: HTTP_USER_AGENT 样例参考值: Mozilla/5.0 (W ...

  3. Fixflow引擎解析(三)(模型) - 创建EMF模型来读写XML文件

    Fixflow引擎解析(四)(模型) - 通过EMF扩展BPMN2.0元素 Fixflow引擎解析(三)(模型) - 创建EMF模型来读写XML文件 Fixflow引擎解析(二)(模型) - BPMN ...

  4. malloc函数的底层实现你是否清楚

    malloc函数的底层实现你是否清楚 说起malloc函数,每个人都能说出它的功能,而且我们经常会用到,那么今天我要说的是关于malloc函数在编译器的底层实现,如果你对它的实现已经很清楚了,那么你可 ...

  5. Java8的新特性

        Java 8主要新特性包括如下几点: 一.接口的默认方法和静态方法 Java 8版之前,接口只有抽象方法,而在Java 8,为接口新增了两种类型的方法. 第一种是默认方法:在Java 8中,可 ...

  6. linux版本qq的安装

    下载http://download.csdn.net/detail/gg296231363/3728117原谅我吧,1分而已,可以自己google,到处有. tar xzvf linuxqq_v1.0 ...

  7. spark处理jsonFile

    按照spark的说法,这里的jsonFile是特殊的文件: Note that the file that is offered as jsonFile is not a typical JSON f ...

  8. C#3.0 集合

    实现IEnumerable<T>伴随一个迭代: public class MyGenCollection : IEnumerable<int> { int[] data = { ...

  9. SQL Server调优系列进阶篇 - 如何维护数据库索引

    前言 上一篇我们研究了如何利用索引在数据库里面调优,简要的介绍了索引的原理,更重要的分析了如何选择索引以及索引的利弊项,有兴趣的可以点击查看. 本篇延续上一篇的内容,继续分析索引这块,侧重索引项的日常 ...

  10. ###Git使用问题

    #@date: 2014-05-04 #@author: gerui #@email: forgerui@gmail.com 一.git reset的使用 今天修改了代码,就git add ./,添加 ...