题意:

有一个长为L的木棍,木棍中间有n个切点。每次切割的费用为当前木棍的长度。求切割木棍的最小费用。

分析:

d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用。则有d(i, j) = min{d(i, k) + d(k, j)} + a[j] - a[i]; ( i < k < j ) 最后一项是第一刀的费用。

时间复杂度为O(n3)

最后还要注意一下输出格式中整数后面还要加一个句点。

 //#define LOCAL
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int INF = ;
const int maxn = ;
int a[maxn], L, n, d[maxn][maxn]; int main(void)
{
#ifdef LOCAL
freopen("10003in.txt", "r", stdin);
#endif while(scanf("%d", &L) == && L)
{
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
a[] = , a[++n] = L;
//for(int i = 0; i < n; ++i) d[i][i+1] = a[i+1] - a[i]; for(int l = ; l <= n; ++l)
for(int i = ; i + l <= n; ++i)
{
d[i][i+l] = INF;
for(int k = i + ; k < i + l; ++k)
d[i][i+l] = min(d[i][k] + d[k][i+l] + a[i+l] - a[i], d[i][i+l]);
} printf("The minimum cutting is %d\n", d[][n]);
} return ;
}

代码君

可以用四边形不等式来优化到O(n2),待续……

UVa 10003 (可用四边形不等式优化) Cutting Sticks的更多相关文章

  1. 区间dp+四边形不等式优化

    区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...

  2. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  3. 区间DP的四边形不等式优化

    今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:

  4. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  5. hdu 3480 Division(四边形不等式优化)

    Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...

  6. 区间dp之四边形不等式优化详解及证明

    看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...

  7. [NOI1995]石子合并 四边形不等式优化

    链接 https://www.luogu.org/problemnew/show/P1880 思路 总之就是很牛逼的四边形不等式优化 复杂度\(O(n^2)\) 代码 #include <ios ...

  8. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  9. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

随机推荐

  1. Android使用XML做动画UI

    在Android应用程序,使用动画效果,能带给用户更好的感觉.做动画可以通过XML或Android代码.本教程中,介绍使用XML来做动画.在这里,介绍基本的动画,如淡入,淡出,旋转等. 效果: htt ...

  2. [resource]Github上维护的一个机器学习相关的框架,库和工具列表

    https://github.com/josephmisiti/awesome-machine-learning  A curated list of awesome Machine Learning ...

  3. PHP读取xml之cdata讲解

    实例: xss.xml <?xml version="1.0" encoding="UTF-8"?><filters>    <f ...

  4. vsftp在REDHAT,CENTOS 5中登录慢的解决办法

    vsftp在REDHAT,CENTOS 5中登录慢的解决办法 vsftp在REDHAT,CENTOS 5中不仅登录慢,至少花30秒左右,而且上传文件的速度也受影响, 经过摸索,根本原因在DNS解析上花 ...

  5. POJ 3080 Blue Jeans (多个字符串的最长公共序列,暴力比较)

    题意:给出m个字符串,找出其中的最长公共子序列,如果相同长度的有多个,输出按字母排序中的第一个. 思路:数据小,因此枚举第一个字符串的所有子字符串s,再一个个比较,是否为其它字符串的字串.判断是否为字 ...

  6. POJ 3440 Coin Toss(求概率)

    题目链接 题意 :把硬币往棋盘上扔,分别求出硬币占1,2,3,4个格子的时候的概率. 思路 : 求出公式输出,不过要注意输出格式,我还因为输入的时候用了int类型错了好几次..... #include ...

  7. jmeter 使用聚合报告分析jtl文件

    对于jmeter测试生成产生的jtl文件除了使用jemter插件来产生csv或者结果,还可以直接用聚合报告来打开,下面来介绍一下怎么操作. 1. 产生jtl文件 注意,默认情况下聚合报告插件只能分析聚 ...

  8. Win7-其中的文件夹或文件已在另一个程序中打开

    Win7-其中的文件夹或文件已在另一个程序中打开 如何解决Win7系统在删除或移动文件时提示,“操作无法完成,因为其中的文件夹或文件已在另一个程序中打开,请关闭该文件夹或文件,然后重试”.   步骤阅 ...

  9. Project Euler 98:Anagramic squares 重排平方数

    Anagramic squares By replacing each of the letters in the word CARE with 1, 2, 9, and 6 respectively ...

  10. 欧拉工程第65题:Convergents of e

    题目链接 现在做这个题目真是千万只草泥马在心中路过 这个与上面一题差不多 这个题目是求e的第100个分数表达式中分子的各位数之和 What is most surprising is that the ...