UVa 10003 (可用四边形不等式优化) Cutting Sticks
题意:
有一个长为L的木棍,木棍中间有n个切点。每次切割的费用为当前木棍的长度。求切割木棍的最小费用。
分析:
d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用。则有d(i, j) = min{d(i, k) + d(k, j)} + a[j] - a[i]; ( i < k < j ) 最后一项是第一刀的费用。
时间复杂度为O(n3)
最后还要注意一下输出格式中整数后面还要加一个句点。
//#define LOCAL
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int INF = ;
const int maxn = ;
int a[maxn], L, n, d[maxn][maxn]; int main(void)
{
#ifdef LOCAL
freopen("10003in.txt", "r", stdin);
#endif while(scanf("%d", &L) == && L)
{
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
a[] = , a[++n] = L;
//for(int i = 0; i < n; ++i) d[i][i+1] = a[i+1] - a[i]; for(int l = ; l <= n; ++l)
for(int i = ; i + l <= n; ++i)
{
d[i][i+l] = INF;
for(int k = i + ; k < i + l; ++k)
d[i][i+l] = min(d[i][k] + d[k][i+l] + a[i+l] - a[i], d[i][i+l]);
} printf("The minimum cutting is %d\n", d[][n]);
} return ;
}
代码君
可以用四边形不等式来优化到O(n2),待续……
UVa 10003 (可用四边形不等式优化) Cutting Sticks的更多相关文章
- 区间dp+四边形不等式优化
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...
- 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...
- 区间DP的四边形不等式优化
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- hdu 3480 Division(四边形不等式优化)
Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...
- 区间dp之四边形不等式优化详解及证明
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...
- [NOI1995]石子合并 四边形不等式优化
链接 https://www.luogu.org/problemnew/show/P1880 思路 总之就是很牛逼的四边形不等式优化 复杂度\(O(n^2)\) 代码 #include <ios ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- 区间DP石子合并问题 & 四边形不等式优化
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...
随机推荐
- 华为章宇:如何学习开源项目及Ceph的浅析
转自http://www.csdn.net/article/2014-04-10/2819247-how-to-learn-opensouce-project-&-ceph 摘要:开源技术的学 ...
- android 开发 实现自动安装
场景:实现自动安装apk程序 注意:不能使用 intent.setDataAndType(Uri.parse(apkPath), "application/vnd.android.pack ...
- java 把URL中的中文转换成utf-8编码
private static final String QUERY = "餐饮"; String sr = URLEncoder.encode(QUERY); System.out ...
- 2013 Asia Hangzhou Regional Contest
Lights Against Dudely http://acm.hdu.edu.cn/showproblem.php?pid=4770 15个位置,所以可以暴力枚举那些放,对于放的再暴力枚举哪个转, ...
- C#调用大漠插件的方法和实例
大漠插件是一个很不错的东西,在按键精灵和易语言里面用得很多,可以后台找图找字,写游戏自动脚本用得特别多.前面写一个微信的自动脚本,查了一些资料,易语言不太熟悉,按键精灵功能上可能不好实现,就找了些资料 ...
- JavaScript高级---组合模式设计
一.设计模式 javascript里面给我们提供了很多种设计模式: 工厂.桥.组合.门面.适配器.装饰者.享元.代理.观察者.命令.责任链 在前面我们实现了工厂模式和桥模式 工厂模式 : 核心:为了生 ...
- 转:[gevent源码分析] 深度分析gevent运行流程
[gevent源码分析] 深度分析gevent运行流程 http://blog.csdn.net/yueguanghaidao/article/details/24281751 一直对gevent运行 ...
- D&F学数据结构系列——红黑树
红黑树 定义:一棵二叉查找树如果满足下面的红黑性质,则为一棵红黑树: 1)每个结点不是红的就是黑的 2)根结点是黑的 3)每个叶结点是黑的 4)如果一个结点是红的,它的两个儿子都是黑的(即不可能有两个 ...
- Java程序员学C#基本语法两个小时搞定(对比学习)
对于学习一门新的语言,关键是学习新语言和以前掌握的语言的区别,但是也不要让以前语言的东西,固定了自己的思维模式,多看一下新的语言的编程思想. 1.引包 using System;java用import ...
- Codeforces D546:Soldier and Number Game
题目链接 输入t对数 a, b 求(b,a]内的每个数拆成素因子的个数和 这里每个数都可以写成素数的乘积,可以写成几个素数的和就有几个素因子,这里求的是(b,a]内的素因子和 思路: 素数的素因子个数 ...