Title:

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place, do not allocate extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1

思路:

联想实际操作,一般都是从最后一位开始分析。就会发现实际上我们需要找的就是从末尾开始,一直保持逆序的位置。比如1,4,3,2中后面的4,3,2都是逆序,因此需要替换1,找到1后面的稍微比它大的数。大致思路就是这样。

class Solution {
public:
void nextPermutation(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int nSize = num.size();
if (nSize <= ) return; int idx = nSize - ;
// 查找第一个下降的元素
while(--idx >= && num[idx] >= num[idx+]);
if (idx >= )
{
int i = nSize - ;
// 查找第一个比idx所指元素大的元素
while(num[i] <= num[idx])
{
--i;
}
swap(num[i], num[idx]);
// 反转后面所有元素,让它从小到大sorted
reverse(num.begin()+idx+, num.end());
}
else
{
reverse(num.begin(), num.end());
}
}
};

查找可用二分查找,虽然最后的时间都差不多

class Solution {
public:
void swap(int &i, int& j){
i = i+j;
j=i-j;
i=i-j;
} int find(vector<int> &num, int startIndex, int v){
int l = startIndex;
int h = num.size()-;
while (l <= h){
int m = (l+h)/;
if (num[m] > v){
l = m+;
}else{
h = m-;
}
}
return h;
}
void nextPermutation(vector<int> &num) {
if (num.size() <= )
return ;
int index = num.size()-;
int min;
int l,r;
while ( index > && num[index-] >= num[index]){
index--;
}
//cout<<index<<endl;
if (index == ){
//到头
l = ;
r = num.size()-;
while (l < r){
swap(num[l],num[r]);
l++;
r--;
}
}else{
//从后面的序列中找到比当前的数刚好大得那个数,并交换,然后重新从小到大排序
int temp = find(num,index,num[index-]);
//cout<<"temp: "<<temp<<endl;
swap(num[index-],num[temp]);
//sort(num.begin()+index,num.end());
l = index;
r = num.size()-;
while (l < r){
swap(num[l],num[r]);
l++;
r--;
}
}
}
};

Title:

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

For example,
[1,1,2] have the following unique permutations:
[1,1,2][1,2,1], and [2,1,1].

思路,DFS搜索

void internalpermuteUnique(vector<int> &num, int index, vector<int> &perm, vector<vector<int> > &result) {
int size = num.size(); if (size == index) {
result.push_back(perm);
}
else {
for (int i = index; i < size; ++i) {
if ((i > index) && (num[i] == num[index])) {
continue;
}
else {
swap(num[index], num[i]);
} perm.push_back(num[index]);
internalpermuteUnique(num, index + , perm, result);
perm.pop_back();
swap(num[index], num[i]);
}
//sort(num.begin() + index, num.end());
}
} vector<vector<int> > permuteUnique(vector<int> &num) {
vector<vector<int> > result;
vector<int> perm; sort(num.begin(), num.end());
internalpermuteUnique(num, , perm, result); return result;
} Title: Permutation Sequence

The set [1,2,3,…,n] contains a total of n! unique permutations.


By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):


  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"


Given n and k, return the kth permutation sequence.

思路:题目不难,通过演算就可以找到规律,不过要注意下标,是从0开始的。所以最开始要将k--

 
class Solution{
public:
string getPermutation(int n,int k){
vector<int> v;
string result;
if (k <= )
return result;
if ( n < || n > )
return result;
for (int i = ; i <= n; i++)
v.push_back(i);
k--;
while (n > ){
int c = getFactorial(--n);
int a = k / c;
int b = k % c;
result.push_back(v[a]+'');
v.erase(v.begin()+a);
k = b;
}
result.push_back(v[]+'');
return result;
}
int getFactorial(int k){
if (k == )
return ;
else
return k * getFactorial(k-);
}
};

 

LeetCode: Next Permutation & Permutations1,2的更多相关文章

  1. LeetCode:60. Permutation Sequence,n全排列的第k个子列

    LeetCode:60. Permutation Sequence,n全排列的第k个子列 : 题目: LeetCode:60. Permutation Sequence 描述: The set [1, ...

  2. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  3. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  4. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  5. LeetCode Palindrome Permutation II

    原题链接在这里:https://leetcode.com/problems/palindrome-permutation-ii/ 题目: Given a string s, return all th ...

  6. LeetCode Palindrome Permutation

    原题链接在这里:https://leetcode.com/problems/palindrome-permutation/ 题目: Given a string, determine if a per ...

  7. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. [LeetCode] Find Permutation 找全排列

    By now, you are given a secret signature consisting of character 'D' and 'I'. 'D' represents a decre ...

  9. [leetcode]Next Permutation @ Python

    原题地址:https://oj.leetcode.com/problems/next-permutation/ 题意: Implement next permutation, which rearra ...

随机推荐

  1. 【BZOJ】【1833】【ZJOI2010】count 数字计数

    数位DP Orz iwtwiioi 学习了一下用记忆化搜索来捉题的新姿势……但没学会TAT,再挖个坑(妈蛋难道对我来说数位DP就是个神坑吗……sigh) //BZOJ 1833 #include< ...

  2. uva 1423 拓扑排序

    刘书上例题  拓扑排序 #include <cstdio> #include <cstdlib> #include <cmath> #include <map ...

  3. json 基础

    json格式 JSON格式:http://www.json.org/ python和JSON的关系请参考:http://docs.python.org/library/json.html JSON建构 ...

  4. 【面试题032】从1到n整数中1出现的次数

    [面试题032]从1到n整数中1出现的次数 题目:     输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.     例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...

  5. the-type-java-lang-charsequence-cannot-be-resolved-in-package-declaration

    http://stackoverflow.com/questions/24301986/the-type-java-lang-charsequence-cannot-be-resolved-in-pa ...

  6. DataRow.RowState 属性

    RowState 的值取决于两个因素:已对该行执行的操作的类型,以及是否已对 DataRow 调用了 AcceptChanges. private void DemonstrateRowState() ...

  7. Ubuntu 14.04 + Linux 3.14.34 系统调用实现文件拷贝

    采用 64位系统, ubuntu 14.04 + 新内核linux-3.14.34 下载地址https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.1 ...

  8. lintcode:哈希函数

    题目: 哈希函数 在数据结构中,哈希函数是用来将一个字符串(或任何其他类型)转化为小于哈希表大小且大于等于零的整数.一个好的哈希函数可以尽可能少地产生冲突.一种广泛使用的哈希函数算法是使用数值33,假 ...

  9. Android 对话框弹出位置和透明度的设置

    在Android中 我们经常会用AlertDialog来显示对话框.通过这个对话框是显示在屏幕中心的.但在某些程序中,要求对话框可以显示在不同的位置.例如,屏幕的上 方或下方.要实现这种效果.就需要获 ...

  10. Sqlserver数据库分页查询

    Sqlserver数据库分页查询一直是Sqlserver的短板,闲来无事,想出几种方法,假设有表ARTICLE,字段ID.YEAR...(其他省略),数据53210条(客户真实数据,量不大),分页查询 ...