【BZOJ 1911】 [Apio2010]特别行动队
Description

Input

Output

Sample Input
-1 10 -20
2 2 3 4
Sample Output
HINT

设j>k且j比k右,则有
f[j]+a*(h[i]-h[j])^2+b*(h[i]-h[j])+c>f[k]+a*(h[i]-h[k])^2+b*(h[i]-h[k])+c
移项可得
f[j]-f[k]+a*h[j]^2-a*h[k]^2-b*h[j]+b*h[k]>2*a*(h[j]-h[k])*h[i]
由此方程我们可以建立一个队列
当队首元素与第二个元素k,j不满足上式时,队首++
取出第一个元素O(1)的更新f[j]
判断队尾的两个元素,以维护上凸的性质
#include<cstdio>
#define ll long long
const int N=;
int a,b,c,n,l,r;
int x[N],q[N];
ll f[N],h[N];
ll sqr(ll x) {return x*x;}
double slop(int k,int j)
{return (double)(f[j]-f[k]+a*sqr(h[j])-a*sqr(h[k])-b*h[j]+b*h[k])/(double)(*a*(h[j]-h[k]));} int main(){
scanf("%d",&n);
scanf("%d%d%d",&a,&b,&c);
for (int i=;i<=n;i++) {
scanf("%d",&x[i]);
h[i]=h[i-]+x[i];
}
for (int i=;i<=n;i++){
while(l<r&&slop(q[l],q[l+])<h[i])l++;
int now=q[l];
f[i]=f[now]+a*sqr((h[i]-h[now]))+b*(h[i]-h[now])+c;
while(l<r&&slop(q[r],i)<slop(q[r-],q[r])) r--;
q[++r]=i;
}
printf("%lld",f[n]);
}
【BZOJ 1911】 [Apio2010]特别行动队的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3191 Solved: 1450[Submit][Statu ...
- BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )
sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
- bzoj 1911: [Apio2010]特别行动队
#include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...
- bzoj 1911: [Apio2010]特别行动队【斜率优化dp】
仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...
- 【BZOJ】1911: [Apio2010]特别行动队(斜率优化dp)
题目 传送门:QWQ 分析 用$ dp[i] $ 表示前 i 个人组成的战斗力之和 然后显然$ dp[i]=Max ( dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum ...
- 1911: [Apio2010]特别行动队(斜率优化)
链接 思路 斜率优化dp. 代码 #include<cstdio> #include<algorithm> #include<cstring> #include&l ...
- 1911: [Apio2010]特别行动队
Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5706 Solved: 2876[Submit][Status][Discuss] Descriptio ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
随机推荐
- Obout - ASP.NET HTML Editor
ASP.NET MVC HTML Editor http://www.obout.com/mvc-editor/index.aspx http://www.obout.com/index.aspx H ...
- ZOJ 3209 Treasure Map (Dancing Links)
Treasure Map Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit S ...
- [改善Java代码]由点及面,一叶知秋----集合大家族
Java中的集合类实在是太丰富了,有常用的ArrayList.HashMap,也有不常用的Stack. Queue,有线程安全的Vector.HashTable,也有线程不安全的LinkedList. ...
- zoj 2676 网络流+01分数规划
思路: 这题的结论得要看amber的论文,结论就是将求f(x)/b(x)最小转化为求min(f(x)-b(x)*λ),其中x为S集的解空间,f(x)为解的边权和,b(x)为解的边数, λ=f(x)/b ...
- ubuntu共享文件夹给virtualbox
在ubuntu或者linuxmint等linux系统下安装了virtualbox,可以通过共享文件夹的方式,把文件夹共享给virtualbox下的虚拟机系统,我这里的虚拟机系统是win7,共享过程如下 ...
- ActiveMQ 的安装
1. 在 http://activemq.apache.org/ 下载 ActiveMQ.Windows 系统选择下载 apache-activemq-x.x.x-bin.zip,Unix/Linux ...
- HDOJ2013蟠桃记
蟠桃记 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...
- JAVA计算器算法实现
import java.awt.BorderLayout; import java.awt.GridLayout; import java.awt.event.ActionEvent; import ...
- css3中定义required,focus,valid和invalid样式
css3 提示只适用于高级浏览器: ChromeFirefoxSafariIE9+ valid.invalid.required的定义 代码如下 复制代码 input:required, input ...
- 一个简单的Redis结合Spring MVC架构以及实现过程
为了加快开发人员对公司项目的理解.更加容易入手和对公司项目的整体把控. 整体框架 首先介绍公司项目的整体框架,闲话少说,直接上图 整体性能分析 这就是公司的一个整体的架构,为了开发人员对架构的侧重点的 ...