【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=2244

【题意】

给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率。

【思路】

DP+CDQ分治+BIT

先把序列反转一下,lis求起来方便。

对于第一问,我们要求的是

f[i]=max{ f[j] },j<i,x[j]<x[i],y[j]<y[i]

发现需要满足的条件就是一个三维偏序,可以用CDQ分治求解

不难发现第二问其实就等于:一颗导弹所在的lis数/总的lis数。一个导弹所在的lis必须包含自己,所以我们设g[i]表示以i为结尾的lis总数,则有转移式:

g[i]=sigma{ g[j] }, j<i,x[j]<x[i],y[j]<y[i],f[j]+1=f[i]

依旧可以用CDQ分治求。注意到最后的一个f的关系,这时候只需要统计出之前的最大lis值再与f相比较就可以了(蒟蒻的我一直苦思冥想。。。

相似的可以求出g’f’。都是g f的相反定义,即以i开头的…

奇技淫巧:我们可以在反转一下并对序列取一下反,这样就都可以套用函数辣。貌似离散化之后跑得飞快,一跃直上rk3

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=b;a<=c;a++)
using namespace std; const int N = 1e5+; struct Node {
int id,x,y;
bool operator<(const Node& rhs)const {
return x<rhs.x||(x==rhs.x&&y<rhs.y);
}
}q[N],t[N];
bool cmp(const Node& a,const Node& b)
{
return a.id<b.id;
} int f[][N]; double g[][N],ans[N];
int hash[N],tot,n; int read()
{
char c=getchar(); int x=; int f=;
while(!isdigit(c)){if(c=='-')f=-; c=getchar();}
while(isdigit(c)) x=x*+c-'',c=getchar();
return x*f;
} int t_f[N],tag[N],T; double t_g[N];
void add(int x,int f,double g)
{
for(;x<=tot;x+=x&-x) {
if(tag[x]!=T) {tag[x]=T;t_f[x]=;t_g[x]=;}
if(f>t_f[x]){t_f[x]=f;t_g[x]=g;}
else if(f==t_f[x]) t_g[x]+=g;
}
}
void query(int x,int& mx,double& sum)
{
mx=; sum=0.0;
for(;x;x-=x&-x) if(tag[x]==T){
if(t_f[x]>mx) {
mx=t_f[x]; sum=t_g[x];
} else if(t_f[x]==mx)
sum+=t_g[x];
}
} void solve(int l,int r,int ty)
{
if(l==r) {
if(!f[ty][l]){
f[ty][l]=; g[ty][l]=;
}
return ;
}
int mid=(l+r)>>;
int l1=l,l2=mid+,i,j,cnt=;
for(i=l;i<=r;i++) {
if(q[i].id<=mid) t[l1++]=q[i];
else t[l2++]=q[i];
}
memcpy(q+l,t+l,sizeof(Node)*(r-l+));
solve(l,mid,ty);
T++;
sort(q+mid+,q+r+);
for(i=mid+,j=l;i<=r;i++)
{
int id;
for(;j<=mid&&q[j].x<=q[i].x;j++) {
id=q[j].id; cnt++;
add(q[j].y,f[ty][id],g[ty][id]);
}
int mx; double sum;
query(q[i].y,mx,sum);
id=q[i].id;
if(mx>) {
if(mx+>f[ty][id]) {
f[ty][id]=mx+; g[ty][id]=sum;
} else if(mx+==f[ty][id]) {
g[ty][id]+=sum;
}
}
}
solve(mid+,r,ty);
l1=l,l2=mid+; int now=l;
while(l1<=mid||l2<=r) {
if(l2>r||l1<=mid&&q[l1]<q[l2]) t[now++]=q[l1++];
else t[now++]=q[l2++];
}
memcpy(q+l,t+l,sizeof(Node)*(r-l+));
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
n=read();
int mxx=;
FOR(i,,n)
{
q[i].x=read(),q[i].y=read();
hash[i]=q[i].y;
mxx=max(mxx,q[i].x);
}
sort(hash+,hash+n+);
tot=unique(hash+,hash+n+)-hash-;
FOR(i,,n)
q[i].y=lower_bound(hash+,hash+tot+,q[i].y)-hash;
reverse(q+,q+n+);
FOR(i,,n) q[i].id=i;
solve(,n,); sort(q+,q+n+,cmp);
reverse(q+,q+n+);
FOR(i,,n)
q[i].x=mxx-q[i].x+,q[i].y=tot-q[i].y+,
q[i].id=i;
solve(,n,);
int mx=; double sum=;
FOR(i,,n) {
int tmp=f[][i];
if(tmp>mx) {
mx=tmp; sum=g[][i]*g[][n-i+];
} else if(tmp==mx)
sum+=g[][i]*g[][n-i+];
}
printf("%d\n",mx);
for(int i=n;i;i--) {
if(f[][i]+f[][n-i+]-==mx) {
ans[i]=(g[][i]*g[][n-i+])/sum;
} else ans[i]=;
}
for(int i=n;i>;i--) printf("%.5lf ",ans[i]);
printf("%.5lf",ans[]);
return ;
}

bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)的更多相关文章

  1. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  2. 【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)

    [BZOJ2244][SDOI2011]拦截导弹(CDQ分治) 题面 BZOJ 洛谷 题解 不难发现这就是一个三维偏序+\(LIS\)这样一个\(dp\). 那么第一问很好求,直接\(CDQ\)分治之 ...

  3. bzoj 2244: [SDOI2011]拦截导弹 cdq分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 237  Solved: ...

  4. BZOJ - 2244 拦截导弹 (dp,CDQ分治+树状数组优化)

    题目链接 dp进阶之CDQ分治优化dp. 前置技能:dp基本功底,CDQ分治,树状数组. 问题等价于求二维最长上升子序列,是一个三维偏序问题(时间也算一维). 设$dp[i]=(l,x)$为以第i枚导 ...

  5. BZOJ2244 [SDOI2011]拦截导弹 【cdq分治 + 树状数组】

    题目 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于前一发的高度,其 ...

  6. bzoj 2244: [SDOI2011]拦截导弹

    #include<cstdio> #include<iostream> #include<algorithm> #define M 100009 using nam ...

  7. BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)

    题意 略- 分析 就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i ...

  8. bzoj 2244 [SDOI2011]拦截导弹(dp+CDQ+树状数组)

    传送门 题解 看了半天完全没发现这东西和CDQ有什么关系…… 先把原序列翻转,求起来方便 然后把每一个位置表示成$(a,b,c)$其中$a$表示位置,$b$表示高度,$c$表示速度,求有多少个位置$a ...

  9. BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]

    传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...

随机推荐

  1. 2328: [HNOI2011]赛车游戏 - BZOJ

    先把一定要减的费用先减掉,就是b*s*len(上坡路),下坡路就设一个初速度,使耗油为0,如果没油了,就无法到达 然后考虑加速 对于长度为len的路,增加v的速度需要len*a*v的油,与len成正比 ...

  2. linux上很方便的上传下载文件工具rz和sz

    linux上很方便的上传下载文件工具rz和sz(本文适合linux入门的朋友) ##########################################################&l ...

  3. c++ 读写锁

    #ifndef THREAD_UTIL_H #define THREAD_UTIL_H #include <pthread.h> namespace spider { class Auto ...

  4. Kafka 之 async producer (2) kafka.producer.async.DefaultEventHandler

    上次留下来的问题 如果消息是发给很多不同的topic的, async producer如何在按batch发送的同时区分topic的 它是如何用key来做partition的? 是如何实现对消息成批量的 ...

  5. solr教程,值得刚接触搜索开发人员一看

    http://blog.csdn.net/awj3584/article/details/16963525 Solr调研总结 开发类型 全文检索相关开发 Solr版本 4.2 文件内容 本文介绍sol ...

  6. Windows调试的基石——符号(1)

    当应用程序被链接以后,代码被逐一地翻译为一个个的地址,优化以后的代码可能初看起来更是面目全非.每当我们使用vs或者windbg等微软的调试工具进行调试的时候,我们可以方便地使用变量名来查看内存.可以使 ...

  7. Map.entrySet() 简介

    转载:http://blog.csdn.net/mageshuai/article/details/3523116 今天看Think in java 的GUI这一章的时候,里面的TextArea这个例 ...

  8. PowerDesigner15(16)在生成SQL时报错Generation aborted due to errors detected during the verification of the mod

    1.用PowerDesigner15建模,在Database—>Generate Database (或者用Ctrl+G快捷键)来生产sql语句,却提示“Generation aborted d ...

  9. __init和__exit宏的作用

    原文地址:http://blog.csdn.net/zhenwenxian/article/details/8564574 内核的部分函数带有__init和__exit宏,负责“初始化”和“清理收尾” ...

  10. photoshop:把路径存储为形状

    这个其实跟定义画笔步骤是一样的 路径存储为自定义形状 1.用路径选择工具(快捷键A),选中路径 2.菜单:编辑->定义自定形状 3.选择自定义形状工具(快捷键U),可以看到刚定义的形状 把当前形 ...