【PAT】1029. Median (25)
Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1={11, 12, 13, 14} is 12, and the median of S2={9, 10, 15, 16, 17} is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.
Given two increasing sequences of integers, you are asked to find their median.
Input
Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (<=1000000) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.
Output
For each test case you should output the median of the two given sequences in a line.
Sample Input
4 11 12 13 14
5 9 10 15 16 17
Sample Output
13
分析:寻找中位数。一开始用sort来进行排序后找出中位数,但是这样会有两组数据超时。所以只能进行逐一比较。
代码:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
int n;
long t;
int i; scanf("%d",&n);
vector<long> vec1(n);
for(i=0; i<n; i++)
scanf("%ld",&vec1[i]); scanf("%d",&n);
vector<long> vec2(n);
for(i=0; i<n; i++)
scanf("%ld",&vec2[i]); int j,temp = 0;
long v;
vector<long> result; for(i=0,j=0; i<vec1.size() && j<vec2.size(); )
{
if(vec1[i] <= vec2[j]){
v = vec1[i];
i++;
}
else{
v = vec2[j];
j++;
}
result.push_back(v);
if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
cout<<result[result.size() - 1]<<endl;
break;
}
} if(result.size() != ( vec1.size() + vec2.size() + 1)/2)
{
while(i<vec1.size())
{
result.push_back(vec1[i]);
if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
cout<<result[result.size() - 1]<<endl;
break;
}
i++;
}
while(j<vec2.size())
{
result.push_back(vec2[j]);
if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
cout<<result[result.size() - 1]<<endl;
break;
}
j++;
}
}
return 0;
}
【PAT】1029. Median (25)的更多相关文章
- PAT甲 1029. Median (25) 2016-09-09 23:11 27人阅读 评论(0) 收藏
1029. Median (25) 时间限制 1000 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given an incr ...
- PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*
1029 Median (25 分) Given an increasing sequence S of N integers, the median is the number at the m ...
- 【PAT甲级】1029 Median (25 分)
题意: 输入一个正整数N(<=2e5),接着输入N个非递减序的长整数. 输入一个正整数N(<=2e5),接着输入N个非递减序的长整数.(重复一次) 输出两组数合并后的中位数.(200ms, ...
- 【PAT】1032 Sharing (25)(25 分)
1032 Sharing (25)(25 分) To store English words, one method is to use linked lists and store a word l ...
- PAT Advanced 1029 Median (25) [two pointers]
题目 Given an increasing sequence S of N integers, the median is the number at the middle position. Fo ...
- 1029 Median (25 分)
1029 Median (25 分) Given an increasing sequence S of N integers, the median is the number at the m ...
- PAT 1029 Median (25分) 有序数组合并与防坑指南
题目 Given an increasing sequence S of N integers, the median is the number at the middle position. Fo ...
- 【PAT】B1075 链表元素分类(25 分)
这道题算有点难,心目中理想的难度. 不能前怕狼后怕虎,一会担心超时,一会又担心内存过大,直接撸 将三部分分别保存到vector 有意思的在于输出 分别输出第一个的add和num 中间输出nextadd ...
- 【LeetCode】4. Median of Two Sorted Arrays(思维)
[题意] 给两个有序数组,寻找两个数组组成后的中位数,要求时间复杂度为O(log(n+m)). [题解] 感觉这道题想法非常妙!! 假定原数组为a,b,数组长度为lena,lenb. 那么中位数一定是 ...
随机推荐
- linux下磁盘的挂载与卸载
Linux下每个文件系统都有独立的inode,block,super block等信息,这个文件系统要挂载到目录树才可以使用,将文件系统与目录树结合的操作称为挂载,反之则为卸载. 也就是说,挂载点一定 ...
- slowhttps安装及使用心得
运行及安装环境,kali. 到googlecode上下载安装包,cd到安装目录./configure 运行完毕后输入make 结束后make install 简单点就直接apt-get install ...
- 运算符重载 C++ 编程思想
class Integer{ int i; public: Integer(int ii) : i(ii) {} const Integer operator+(const Integer& ...
- 使用源码编译wxpython-基于python2.7
1.前言 本文主要讲述在linux环境下进行编译wxpython,在windows下面安装wxpython很简单,只要下载,然后直接执行exe文件,下一步下一步即可安装,在linux下面,则具有很多步 ...
- [翻译]Python——十年语言之冠
最近我发现了这个PYPL——编程语言流行指数.它对各种语言的流行指标进行了二次发掘.作者指出TIOBE指数很可能不能反映出真实情况,归咎于一些编程语言的名称会导致误解.他引入了一些新术语,利用谷歌趋势 ...
- 黑马程序员——有关protocol的小结
在OC程序中经常会有这样的问题就是一个类想让其他类帮自己实现某些方法,然后再将结果返回给这个类:如何让一个类要找的代理去实现自己想要的方法呢? 这样就需要有一个协议,让能遵守协议的其他类都能实现协议中 ...
- 把一个序列转换成严格递增序列的最小花费 CF E - Sonya and Problem Wihtout a Legend
//把一个序列转换成严格递增序列的最小花费 CF E - Sonya and Problem Wihtout a Legend //dp[i][j]:把第i个数转成第j小的数,最小花费 //此题与po ...
- 50+ 响应式的Prestashop电商主题
PrestaShop是一款针对web2.0设计的全功能.跨平台的免费开源电子商务解决方案,自08年1.0版本发布,短短两年时间,发展迅速,全球已超过四万家网店采用Prestashop进行部署.Pres ...
- Dreamweaver SSH Tunneling
- oracle数据库建表
create or replace directory dumpdir as 'E:\oracle\dumpdir';create temporary tablespace ydxt_temp tem ...