4 Best Time to Buy and Sell Stock III_Leetcode
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
当遇到限制次数以及求最大的要求时,很自然要联想到动规。
动规中不同的状态设计,会有不同的时间复杂度。
本题有两种解法:
(1)
我最开始想到的是下面这种解法,但是Memory Limit Exceeced.
O(n^2)的解法
很自然的我们会想到记录从开头到第i个字符中进行k次交易能够得到的最大收益,记为dp[i][k].
进行更新:dp[i][k] = max{dp[j][k-1]+maxprofit(j...i)}, 0 <= j < i
这里我们需要用到每个可能的区间中进行一次交易的最大收益,也就是I中的问题。
预先计算出所有的maxprofit的复杂度是O(n^2),dp的复杂度也是O(n^2).
Code:
class Solution {
public:
int maxProfit(vector<int> &prices) {
int n = prices.size();
if(n == 0) return 0;
vector<vector<int>> dp(n, vector<int>(3,0));
vector<vector<int>> maxprofit(n, vector<int>(n, 0));
for(int i = 0; i < n; i++)
{
int curmin = prices[i];
int curprofit = 0;
for(int j = i+1; j < n; j++)
{
if(prices[j] < curmin) curmin = prices[j];
else{
int gap = prices[j] - curmin;
if(gap > curprofit) curprofit = gap;
}
maxprofit[i][j] = curprofit;
if(i == 0) dp[j][1] = curprofit;
}
}
for(int i = 1; i < n; i++)
{
int tmp = dp[0][1] + maxprofit[0][i];
for(int j = 1; j < i; j++)
{
if(dp[j][1] + maxprofit[j][i] > tmp) tmp = dp[j][1]+maxprofit[j][i];
}
dp[i][2] = tmp;
}
return dp[n-1][2];
}
};
(2)O(n)的解法
参考了这个:http://blog.csdn.net/linhuanmars/article/details/23236995
从上面的分析中我们很容易找出一个case, 例如有一个区间差异特别大,在很长时间内都是最优的选择,而我们的dp却需要不断的枚举一些不可能构成最终解的区间。
怎么样更聪明的定义状态呢?
上一种定义中,我们是定义(i,j)中的最大的解,这样不同的(i,j)对对应的可能是同一种解;这样我们可以用一个global变量来存储;但是由于处理的区间是不断延伸的,后面出现的数字可能和当前末尾的组合起来行程更大的区间,因此我们用一个local变量存储当前以i结尾的最大的解的值。
扩展到能够选择k个区间,我们定义:
global(i,k) 表示截止到第i天,进行k次交易能够获得的最优解(不一定以最后一天结束)
local(i,k) 表示以第i天结束的k次交易能够获得的最优解
能够得到递推式:
local[i][k] = max{global[i-1][k-1], local[i-1][k]} + prices[i] - prices[i-1];
global[i][k] = max{global[i-1][k], local[i][k]};
初始值全为零,最终解为global[n-1][2]。
Code:
class Solution {
public:
int maxProfit(vector<int> &prices) {
int n = prices.size();
if(n == 0) return 0;
vector<vector<int>> global(n, vector<int>(3,0));
vector<vector<int>> local(n, vector<int>(3,0));
for(int j = 1; j <= 2; j++)
{
for(int i = 1; i < n; i++)
{
local[i][j] = max(global[i-1][j-1], local[i-1][j]) + prices[i] - prices[i-1];
global[i][j] = max(global[i-1][j], local[i][j]);
}
}
return global[n-1][2];
}
};
从其他博客中找到了一种O(n)的解法,思路更简单,但是不具备从2次交易推广到k次的潜力。
主要的思路就是从前往后扫描一遍,找到从0到i的一次交易的最大收益,然后从后往前扫描一遍,得到从i+1到n-1的最大收益。然后两者相加取最大即可。
传送门:http://fisherlei.blogspot.com/2013/01/leetcode-best-time-to-buy-and-sell_3958.html
4 Best Time to Buy and Sell Stock III_Leetcode的更多相关文章
- [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- LeetCode——Best Time to Buy and Sell Stock II (股票买卖时机问题2)
问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...
- 123. Best Time to Buy and Sell Stock (三) leetcode解题笔记
123. Best Time to Buy and Sell Stock III Say you have an array for which the ith element is the pric ...
随机推荐
- PHP图片加文字水印和图片水印方法(鉴于李老师博客因没加水印被盗,特搜集的办法。希望能有用!)
$dst_path = 'dst.jpg'; //创建图片的实例 $dst = imagecreatefromstring(file_get_contents($dst_path)); //打上文字 ...
- Nginx设置线程数为整机内核数的俩倍!
Nginx设置线程数为整机内核数的俩倍!
- Android通过Http连接MySQL 实现登陆/注册(数据库+服务器+客户端)
写在最前: 在实际开发中,相信每个项目都会有用户登陆注册功能,这个实现的方法很多,下面是我实现的方法,供大家交流. 新人发帖,万分紧张,怎么样才能装作一副经常发帖的样子不被别人看出来呢-,- ? 好了 ...
- SqlDataReader和SqlDataAdapter
SqlDataReader 高效,功能弱,只读访问SqlDataAdapter 强大,要求资源也大一点 SqlDataReader 只能在保持跟数据库连接的状态下才可以读取... SqlDataAda ...
- 监视 Windows 剪切板
一.先看代码 import win32con,win32gui import win32clipboard as cb class MyWindow(): def __init__(self): #注 ...
- iptables过滤设置服务端口
1.为SSH跟换连接端口 修改SSH配置文件:/etc/ssh/sshd_config #找到Port 22,这里是标识默认使用22端口,修改为想要的端口. Port Port 2.查看iptable ...
- Linux下配置python环境
- Eclipse 各版本版本号代号对应一览表
版本号 代号 日期 Eclipse 3.1 IO [木卫一,伊奥] 2005 Eclipse 3.2 Callisto [木卫四,卡里斯托] 2006 Eclipse 3.3 Eruopa ...
- kali 安装ss代理客户端的方法(纯属个人总结)
1.声明版本,因为别的版本没测试过 2.下载客户端安装包 wget https://github.com/shadowsocks/shadowsocks/archive/master.zip 这个是代 ...
- EndNote(二)之英文引文导入方式
在上一篇EndNote教程(一)--基本介绍中介绍了基本使用,今天将来介绍如何将常用文献引文导入EndNote中. EndNote在文献管理方面有着很多优点,可以节约很多精力.但是,不同文献查询网站可 ...