一般情况下,大家使用redis去put/get都是先拿到一个jedis实例,然后操作,然后释放连接;这种模式是

请求-响应,请求-响应

这种模式,下一次请求必须得等第一次请求响应回来之后才可以,因为redis是单线程的,按部就班,一步一步来。

而pipeline管道改变了这种请求模式,客户端可以一次发送多个命令,无须等待服务器的返回,

请求,请求,请求,响应,响应,响应

这种模式

这就大大减少了影响性能的关键因素-网络往返时间

下面就上面两种模式以及JDK的map三者做一个性能比较

  1.  
    package redis;
  2.  
     
  3.  
    import java.util.concurrent.BlockingQueue;
  4.  
    import java.util.concurrent.LinkedBlockingQueue;
  5.  
     
  6.  
    import redis.clients.jedis.ShardedJedis;
  7.  
    import redis.clients.jedis.ShardedJedisPipeline;
  8.  
     
  9.  
    /**
  10.  
    * @Type ShardRedisDemo.java
  11.  
    * @Desc
  12.  
    * @author chiwei
  13.  
    * @date 2016年6月13日 下午3:24:25
  14.  
    * @version
  15.  
    */
  16.  
    public class ShardRedisDemo {
  17.  
     
  18.  
    public static void main(String[] args) throws InterruptedException {
  19.  
    ShardRedisClient src = new ShardRedisClient();
  20.  
    src.setServers("redis://172.23.26.135:7379");
  21.  
    src.init();
  22.  
    int count = 10000;
  23.  
    ShardedJedis sj = src.getResource();
  24.  
    long begin = System.currentTimeMillis();
  25.  
    for (int i = 0; i < count; i++) {
  26.  
    sj.set("a" + i, "v" + i);
  27.  
    }
  28.  
    sj.close();
  29.  
    System.out.println(System.currentTimeMillis() - begin);
  30.  
    sj = src.getResource();
  31.  
    ShardedJedisPipeline p = sj.pipelined();
  32.  
    begin = System.currentTimeMillis();
  33.  
    for (int i = 0; i < count; i++) {
  34.  
    p.set("ap" + i, "vp" + i);
  35.  
    }
  36.  
    p.sync();
  37.  
    sj.close();
  38.  
    System.out.println(System.currentTimeMillis() - begin);
  39.  
    BlockingQueue<String> logQueue = new LinkedBlockingQueue<String>();
  40.  
    begin = System.currentTimeMillis();
  41.  
    for (int i = 0; i < count; i++) {
  42.  
    logQueue.put("i=" + i);
  43.  
    }
  44.  
    System.out.println(System.currentTimeMillis() - begin);
  45.  
    }
  46.  
     
  47.  
    }
  48.  
     
  49.  
    /**
  50.  
    * Revision history
  51.  
    * -------------------------------------------------------------------------
  52.  
    *
  53.  
    * Date Author Note
  54.  
    * -------------------------------------------------------------------------
  55.  
    * 2016年6月13日 chiwei create
  56.  
    */

结果如下:

45027
116
11

大家看相对时间就行了,我测试时是经过VPN连的redis,由此结果可见pipeline的性能惊人的高。

但是pipeline适合于什么样的场景使用呢?

有些系统可能对可靠性要求很高,每次操作都需要立马知道这次操作是否成功,是否数据已经写进redis了,那这种场景就不适合。

还有的系统,可能是批量的将数据写入redis,允许一定比例的写入失败,那么这种场景就可以使用了,比如10000条一下进入redis,可能失败了2条无所谓,后期有补偿机制就行了,比如短信群发这种场景,如果一下群发10000条,按照第一种模式去实现,那这个请求过来,要很久才能给客户端响应,这个延迟就太长了,如果客户端请求设置了超时时间5秒,那肯定就抛出异常了,而且本身群发短信要求实时性也没那么高,这时候用pipeline最好了。

=======================================================================================================================

一般情况下,Redis Client端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client。
这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端。
在Redis中,有没有类似HBase Scanner Caching的东西呢,一次请求,返回多条记录呢?
有,这就是Pipline。官方介绍 http://redis.io/topics/pipelining

通过pipeline方式当有大批量的操作时候,我们可以节省很多原来浪费在网络延迟的时间,需要注意到是用pipeline方式打包命令发送,redis必须在处理完所有命令前先缓存起所有命令的处理结果。打包的命令越多,缓存消耗内存也越多。所以并不是打包的命令越多越好。

使用Pipeline在对Redis批量读写的时候,性能上有非常大的提升。

使用Java测试了一下:

  1. package com.lxw1234.redis;
  2. import java.util.HashMap;
  3. import java.util.Map;
  4. import java.util.Set;
  5. import redis.clients.jedis.Jedis;
  6. import redis.clients.jedis.Pipeline;
  7. import redis.clients.jedis.Response;
  8. public class Test {
  9. public static void main(String[] args) throws Exception {
  10. Jedis redis = new Jedis("127.0.0.1", 6379, 400000);
  11. Map<String,String> data = new HashMap<String,String>();
  12. redis.select(8);
  13. redis.flushDB();
  14. //hmset
  15. long start = System.currentTimeMillis();
  16. //直接hmset
  17. for (int i=0;i<10000;i++) {
  18. data.clear();
  19. data.put("k_" + i, "v_" + i);
  20. redis.hmset("key_" + i, data);
  21. }
  22. long end = System.currentTimeMillis();
  23. System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
  24. System.out.println("hmset without pipeline used [" + (end - start) / 1000 + "] seconds ..");
  25. redis.select(8);
  26. redis.flushDB();
  27. //使用pipeline hmset
  28. Pipeline p = redis.pipelined();
  29. start = System.currentTimeMillis();
  30. for (int i=0;i<10000;i++) {
  31. data.clear();
  32. data.put("k_" + i, "v_" + i);
  33. p.hmset("key_" + i, data);
  34. }
  35. p.sync();
  36. end = System.currentTimeMillis();
  37. System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
  38. System.out.println("hmset with pipeline used [" + (end - start) / 1000 + "] seconds ..");
  39. //hmget
  40. Set keys = redis.keys("*");
  41. //直接使用Jedis hgetall
  42. start = System.currentTimeMillis();
  43. Map<String,Map<String,String>> result = new HashMap<String,Map<String,String>>();
  44. for(String key : keys) {
  45. result.put(key, redis.hgetAll(key));
  46. }
  47. end = System.currentTimeMillis();
  48. System.out.println("result size:[" + result.size() + "] ..");
  49. System.out.println("hgetAll without pipeline used [" + (end - start) / 1000 + "] seconds ..");
  50. //使用pipeline hgetall
  51. Map<String,Response<Map<String,String>>> responses = new HashMap<String,Response<Map<String,String>>>(keys.size());
  52. result.clear();
  53. start = System.currentTimeMillis();
  54. for(String key : keys) {
  55. responses.put(key, p.hgetAll(key));
  56. }
  57. p.sync();
  58. for(String k : responses.keySet()) {
  59. result.put(k, responses.get(k).get());
  60. }
  61. end = System.currentTimeMillis();
  62. System.out.println("result size:[" + result.size() + "] ..");
  63. System.out.println("hgetAll with pipeline used [" + (end - start) / 1000 + "] seconds ..");
  64. redis.disconnect();
  65. }
  66. }

测试结果如下:

  1. dbsize:[10000] ..
  2. hmset without pipeline used [243] seconds ..
  3. dbsize:[10000] ..
  4. hmset with pipeline used [0] seconds ..
  5. result size:[10000] ..
  6. hgetAll without pipeline used [243] seconds ..
  7. result size:[10000] ..
  8. hgetAll with pipeline used [0] seconds ..

使用pipeline来批量读写10000条记录,就是小菜一碟,秒完。

转自:https://blog.csdn.net/simonchi/article/details/52231674

转自:https://www.cnblogs.com/an7ing/p/5082243.html

Java Redis的Pipeline管道,批量操作,节省大量网络往返时间 & Redis批量读写(hmset&hgetall) 使用Pipeline的更多相关文章

  1. 【JAVA今法修真】 第三章 关系非关系 redis法器

    您好,我是南橘,万法仙门的掌门,刚刚从九州世界穿越到地球,因为时空乱流的影响导致我的法力全失,现在不得不通过这个平台向广大修真天才们借去力量.你们的每一个点赞,每一个关注都是让我回到九州世界的助力,兄 ...

  2. Python高级编程之生成器(Generator)与coroutine(三):coroutine与pipeline(管道)和Dataflow(数据流_

    原创作品,转载请注明出处:点我 在前两篇文章中,我们介绍了什么是Generator和coroutine,在这一篇文章中,我们会介绍coroutine在模拟pipeline(管道 )和控制Dataflo ...

  3. 【spring boot】spring boot 基于redis pipeline 管道,批量操作redis命令

    spring boot 2.x 使用RedisTemplate 操作 =================================== 1.pom.xml <!--spring2.0集成r ...

  4. 【redis】pipeline - 管道模型

    redis-pipeline 2020-02-10: 因为我把github相关的wiki删了,所以导致破图...待解决.(讲真github-wiki跟project是2个url,真的不好用) 因为用的 ...

  5. .NET客户端实现Redis中的管道(PipeLine)与事物(Transactions)

    序言 Redis中的管道(PipeLine)特性:简述一下就是,Redis如何从客户端一次发送多个命令,服务端到客户端如何一次性响应多个命令. Redis使用的是客户端-服务器模型和请求/响应协议的T ...

  6. Java 使用pipeline对redis进行批量读写

    code import redis.clients.jedis.Jedis; import redis.clients.jedis.Pipeline; import java.util.List; p ...

  7. 使用pipeline管道执行redis命令

    pipeline管道可以减少后端与redis的连接次数,从而实现了优化. 原理如下: 使用方法: 未使用pipeline前: strict_redis = get_redis_connection(' ...

  8. Redis中的管道(PipeLine)与事物(Transactions)

    Redis中的管道(PipeLine)与事物(Transactions) 序言 Redis中的管道(PipeLine)特性:简述一下就是,Redis如何从客户端一次发送多个命令,服务端到客户端如何一次 ...

  9. Redis六(管道)

    管道 为什么使用管道? Redis是一个TCP服务器,支持请求/响应协议. 在Redis中,请求通过以下步骤完成: 客户端向服务器发送查询,并从套接字读取,通常以阻塞的方式,用于服务器响应. 服务器处 ...

随机推荐

  1. PreparedStatement vs Statement

    Statement和PreparedStatement之间的区别 1.PreparedStatement是预编译的,对于批量处理可以大大提高效率. 也叫JDBC存储过程   2.使用 Statemen ...

  2. Python大数据:jieba 中文分词,词频统计

    # -*- coding: UTF-8 -*- import sys import numpy as np import pandas as pd import jieba import jieba. ...

  3. HDU_2586_How far away ?

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. Python并行编程(十四):异步编程

    1.基本概念 除了顺序执行和并行执行的模型以外,还有异步模型,这是事件驱动模型的基础.异步活动的执行模型可以只有一个单一的主控制流,能在单核心系统和多核心系统中运行. 在并发执行的异步模型中,许多任务 ...

  5. 9.GIt删除操作

    在Git中,删除也是一个修改操作,我们实战一下,先添加一个新文件test.txt到Git并且提交: 创建一个文件test.txt,写入一句话`this is new file !`. $ echo ' ...

  6. git-【二】本地git操作提交、版本回退

    一.创建版本库,提交文件 什么是版本库?版本库又名仓库,英文名repository,你可以简单的理解一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改,删除,Git都能跟踪,以便任 ...

  7. JS操作符转化数字

    在Node.js源代码里,随处可见使用各种符号处理字符串为数字的.可能由于不同人编写,使用的风格也各有不同. 基本上有下面几种. 将字符串转化为数字 + 将一个数字的字符串转化为数字很简单的一种做法就 ...

  8. OleDb未指定错误

    桌面开发,居然也出这种问题: 1. C#读取Excel“未指定错误” http://www.connectionstrings.com/ http://www.dnetzj.com/Content/2 ...

  9. 关于RxJava背压

    http://flyou.ren/2017/04/05/%E5%85%B3%E4%BA%8ERxJava%E8%83%8C%E5%8E%8B/?utm_source=tuicool&utm_m ...

  10. mac 安装homobrew 报错解决

    按照官网(https://brew.sh/index_zh-cn.html)给的命令:     /usr/bin/ruby -e "$(curl -fsSL https://raw.gith ...