洛谷P2831 愤怒的小鸟

原题链接

题解

首先简单数学公式送上。

\(ax_1^2+bx_1=y_1\)

\(ax_2^2+bx_2=y_2\)

\(ax_1^2x_2+bx_1x_2=y_1x_2\)

\(ax_2^2x_1+bx_2x_1=y_2x_1\)

\(a=(y_1x_2-y_2x_1)/x_1x_2(x_1-x_2)\)

\(b=(y_1-ax_1^2)/x_1\)

不用证明吧。。。

85分

状态压缩。每次枚举两个点计算抛物线,然后消除这条线上所有点,再转移。

// It is made by XZZ
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
#define db double
db x[18],y[18],eps=0.00000001;
int f[1<<18],n;
il int dp(int v){
if(v==0)return 0;
if(v==(v&-v))return 1;
if(f[v])return f[v];
f[v]=233;
rep(i,0,n-1)if(v&(1<<i))rep(j,i+1,n-1)if((v&(1<<j))){
db a=(y[i]*x[j]-y[j]*x[i])/(x[i]*x[j]*(x[i]-x[j])),b=(y[i]-a*x[i]*x[i])/(x[i]);
if(a>=0)continue;
int V=v;
rep(k,0,n-1)if((V&(1<<k))&&fabs(a*x[k]*x[k]+b*x[k]-y[k])<=eps)V^=1<<k;
f[v]=min(f[v],dp(V)+1);
}
rep(i,0,n-1)if(v&(1<<i))f[v]=min(f[v],dp(v^(1<<i))+1);
return f[v];
}
il vd work(){
n=gi();gi();
rep(i,0,n-1)scanf("%lf%lf",&x[i],&y[i]);
rep(i,0,(1<<n)-1)f[i]=0;
printf("%d\n",dp((1<<n)-1));
}
int main(){
int T=gi();
while(T--)work();
return 0;
}

AC算法

上面理论复杂度\(O(2^nn^2T)\)。会炸。

思考原因。

显然算重情况较多。

再想想。。。每个状态的第一头猪最后肯定要被打死(废话)。强制它第一个死,只需枚举一个点

理论复杂度\(O(2^nnT)\)。

// It is made by XZZ
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
#define db double
db x[18],y[18],eps=0.0000001;
int f[1<<18],n;
il int dp(int v){
if(v==0)return 0;
if(v==(v&-v))return 1;
if(f[v])return f[v];
f[v]=233;
int j=log2(v&-v);
rep(i,j+1,n-1)if(v&(1<<i)){
db a=(y[i]*x[j]-y[j]*x[i])/(x[i]*x[j]*(x[i]-x[j])),b=(y[i]-a*x[i]*x[i])/(x[i]);
if(a>=0)continue;
int V=v;
rep(k,j,n-1)if((V&(1<<k))&&fabs(a*x[k]*x[k]+b*x[k]-y[k])<=eps)V^=1<<k;
f[v]=min(f[v],dp(V)+1);
}
f[v]=min(f[v],dp(v-(v&-v))+1);
return f[v];
}
il vd work(){
n=gi();gi();
rep(i,0,n-1)scanf("%lf%lf",&x[i],&y[i]);
rep(i,0,(1<<n)-1)f[i]=0;
printf("%d\n",dp((1<<n)-1));
}
int main(){
int T=gi();
while(T--)work();
return 0;
}

洛谷P2831 愤怒的小鸟的更多相关文章

  1. 洛谷 P2831 愤怒的小鸟

    P2831 愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0)(0,0) 处,每次 Kiana 可以用它向第一象 ...

  2. 洛谷P2831 愤怒的小鸟 + 篮球比赛1 2

    这三道题一起做,有一点心得吧. 愤怒的小鸟,一眼看上去是爆搜,但是实现起来有困难(我打了0分出来). 还有一种解法是状压DP. 抛物线一共只有那么多条,我们枚举抛物线(枚举两个点),这样就能够预处理出 ...

  3. 洛谷P2831 愤怒的小鸟——贪心?状压DP

    题目:https://www.luogu.org/problemnew/show/P2831 一开始想 n^3 贪心来着: 先按 x 排个序,那么第一个不就一定要打了么? 在枚举后面某一个,和它形成一 ...

  4. 2018.11.02 洛谷P2831 愤怒的小鸟(状压dp)

    传送门 状压一眼题. 直接f[i]f[i]f[i]表示未选择状态为iii时的最小次数. 然后考虑现在怎么转移. 显然可以直接枚举消掉某一个点或者某两个点,复杂度O(n22n)O(n^22^n)O(n2 ...

  5. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  6. 【洛谷P2831】[NOIP2016]愤怒的小鸟

    愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...

  7. 洛谷 2831 (NOIp2016) 愤怒的小鸟——仅+1所以bfs优化

    题目:https://www.luogu.org/problemnew/show/P2831 状压dp.跑得很慢.(n^2*2^n) 注意只打一只猪的情况. #include<iostream& ...

  8. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  9. CodeForces 79D 【Password】,洛谷P3943 【星空】

    其实我做的是洛谷的P3943,但是听说fstqwq窃题...... 题目描述: 小 C 拿来了一长串星型小灯泡,假装是星星,递给小 F,想让小 F 开心一点.不过,有 着强迫症的小 F 发现,这串一共 ...

随机推荐

  1. [19/04/25-星期四] GOF23_结构型模式(适配器模式、代理模式)

    一.引言 结构模式:核心作用就是从程序的结构上实现松耦合,从而扩大整体的类结构,用来解决更大的问题. 二.适配器模式(adapter) 生活中假设笔记本是标准的USB接口但是外置键盘是圆形接口,这时候 ...

  2. MyBatis(2)-全局配置文件

    本文的代码是在MyBatis(1)-简单入门基础之上进行学习的,如有不懂请先看此博文MyBatis(1)-简单入门! 1)配置文件的安装 --->在联网的情况下,点击去下载http://myba ...

  3. C语言的谜题

    本篇文章<C语言的谜题>展示了14个C语言的迷题以及答案,代码应该是足够清楚的,而且我也相信有相当的一些例子可能是我们日常工作可能会见得到的.通过这些迷题,希望你能更了解C语言.如果你不看 ...

  4. php版本低更换php版本-问题以解决

    Parse error: syntax error, unexpected 'class' (T_CLASS), expecting identifier (T_STRING) or variable ...

  5. 离线服务器下docker的部署与应用

    一分钟内形成docker的模糊概念 网上很多文章避免将docker与虚拟机混为一谈,但对于初学者来说,完全可以将docker当做一种虚拟机技术,只需要牢牢记住一点最重要的区别:docker依赖于物理机 ...

  6. iOS 推送功能打包后获取不到deviceToken

    公司项目用ionic3构建, 用了极光推送插件(cordova-plugin-jpush). 开发时一切将各种Bundle Id, 推送证书等都绑定完测试一切正常. 可是要给测试人员打Ad-Hoc包时 ...

  7. js 时间转换毫秒的四种方法(转)

    将时间转换为毫秒数的方法有四个: Date.parse()Date.UTCvalueOf()getTime() 1. Date.parse():该方法接受一个表示日期的字符串参数,然后尝试根据这个日期 ...

  8. Linux启动流程(CentOS6)

    内核级别: (POST)BIOS加电自检-->(Boot Sequence)从BIOS中读取启动顺序-->读取MBR中的bootloader-->加载内核-->读取伪根--&g ...

  9. html中如何移除video下载按钮

    我发现部分安卓手机使用video标签播放视频的时候会自带一个下载按钮,一般产品大多都不需要这一功能,那如何屏蔽下载按钮呢?有下面两种,请一定使用第一种方式,使用css控制会有兼容性问题,建议不要使用这 ...

  10. Delphi 的TStringBuilder防止服务器内存碎片化

    Delphi 2009+ 的 System.SysUtils提供了一个类似.Net的StringBuilder,用于存储字符数组. 很多人不明白为什么要用TStringBuilder, Delphi中 ...