Description

在虐各种最长公共子串、子序列的题虐的不耐烦了之后,你决定反其道而行之。

一个串的“子串”指的是它的连续的一段,例如bcd是abcdef的子串,但bde不是。
一个串的“子序列”指的是它的可以不连续的一段,例如bde是abcdef的子串,但bdd不是。
下面,给两个小写字母串A,B,请你计算:
(1) A的一个最短的子串,它不是B的子串
(2) A的一个最短的子串,它不是B的子序列
(3) A的一个最短的子序列,它不是B的子串
(4) A的一个最短的子序列,它不是B的子序列

Input

有两行,每行一个小写字母组成的字符串,分别代表A和B。

Output

输出4行,每行一个整数,表示以上4个问题的答案的长度。如果没有符合要求的答案,输出-1.

Sample Input

aabbcc
abcabc

Sample Output

2
4
2
4

HINT

对于100%的数据,A和B的长度都不超过2000

Solution

强行四合一?

(一)枚举$A$串的左端点,然后从左端点开始往后在$B$串的$SAM$上面跑,一旦失配就更新答案然后$break$

(二)预处理数组$next[i][j]$表示从$i$后面的第一次出现字母$j$的位置。预处理出$nextA$和$nextB$,然后枚举$A$左端点往后贪心,如果失配就更新答案然后$break$

(三)设$len[i]$表示在$B$串的$SAM$的$i$点的时候最短的长度。然后用$A$串在$B$的$SAM$上面跑。如果失配就更新答案,否则就更新$len$。

(四)设$len[i]$表示在$B$串的$i$位置的时候最短的长度。然后用$A$串的每一个字母,借$next$数组倒序去更新$len$。如果失配就更新答案,否则就更新$len$。至于为什么要倒序,其实是和背包差不多的原理,并不难想。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (4009)
using namespace std; char s[N],t[N];
int slen,tlen,nextA[N][],nextB[N][],last[],len[N]; struct SAM
{
int son[N][],fa[N],step[N],wt[N],od[N];
int p,q,np,nq,last,cnt;
SAM(){last=cnt=;} void Insert(int x)
{
p=last; np=last=++cnt; step[np]=step[p]+;
while (p && !son[p][x]) son[p][x]=np, p=fa[p];
if (!p) fa[np]=;
else
{
q=son[p][x];
if (step[q]==step[p+]) fa[np]=q;
else
{
nq=++cnt; step[nq]=step[p]+;
memcpy(son[nq],son[q],sizeof(son[q]));
fa[nq]=fa[q]; fa[np]=fa[q]=nq;
while (son[p][x]==q) son[p][x]=nq, p=fa[p];
}
}
}
}SAM; void CalcNext()
{
memset(last,-,sizeof(last));
for (int i=slen; i>=; --i)
{
for (int j=; j<; ++j) nextA[i][j]=last[j];
last[s[i]-'a']=i;
}
memset(last,-,sizeof(last));
for (int i=tlen; i>=; --i)
{
for (int j=; j<; ++j) nextB[i][j]=last[j];
last[t[i]-'a']=i;
}
} void Sub1()
{
int ans=2e9;
for (int i=; i<=slen; ++i)
{
int now=;
for (int j=i; j<=slen; ++j)
{
if (!SAM.son[now][s[j]-'a']) {ans=min(ans,j-i+); break;}
now=SAM.son[now][s[j]-'a'];
}
}
printf("%d\n",ans==2e9?-:ans);
} void Sub2()
{
int ans=2e9;
for (int i=; i<=slen; ++i)
{
int now=;
for (int j=i; j<=slen; ++j)
{
if (nextB[now][s[j]-'a']==-) {ans=min(ans,j-i+); break;}
now=nextB[now][s[j]-'a'];
}
}
printf("%d\n",ans==2e9?-:ans);
} void Sub3()
{
int ans=2e9;
memset(len,0x7f,sizeof(len));
len[]=;
for (int i=; i<=slen; ++i)
for (int j=; j<=SAM.cnt; ++j)
{
int nxt=SAM.son[j][s[i]-'a'];
if (!nxt) ans=min(ans,len[j]);
else len[nxt]=min(len[nxt],len[j]+);
}
printf("%d\n",ans==2e9?-:ans);
} void Sub4()
{
int ans=2e9;
memset(len,0x7f,sizeof(len));
len[]=;
for (int i=; i<=slen; ++i)
for (int j=tlen; j>=; --j)
{
int nxt=nextB[j][s[i]-'a'];
if (nxt==-) ans=min(ans,len[j]+);
else len[nxt]=min(len[nxt],len[j]+);
}
printf("%d\n",ans==2e9?-:ans);
} int main()
{
scanf("%s%s",s+,t+);
slen=strlen(s+), tlen=strlen(t+);
for (int i=; i<=tlen; ++i)
SAM.Insert(t[i]-'a');
CalcNext();
Sub1(); Sub2(); Sub3(); Sub4();
}

BZOJ4032:[HEOI2015]最短不公共子串(SAM)的更多相关文章

  1. bzoj4032: [HEOI2015]最短不公共子串(SAM+DP)

    4032: [HEOI2015]最短不公共子串 题目:传送门 题解: 陈年老题良心%你赛膜爆嘎爷 当初做题...一眼SAM...结果只会两种直接DP的情况... 情况1: 直接设f[i][j] 表示的 ...

  2. luoguP4112 [HEOI2015]最短不公共子串 SAM,序列自动机,广搜BFS

    luoguP4112 [HEOI2015]最短不公共子串 链接 luogu loj 思路 子串可以用后缀自动机,子序列可以用序列自动机. 序列自动机是啥,就是能访问到所有子序列的自动机. 每个点记录下 ...

  3. [BZOJ4032][HEOI2015]最短不公共子串(Trie+DP)

    在虐各种最长公共子串.子序列的题虐的不耐烦了之后,你决定反其道而行之——被它们虐. 操作一:对A,B分别建SAM,暴力BFS. 操作二:对B建序列自动机或SAM,A在上面暴力匹配. 操作三:对A,B建 ...

  4. BZOJ4032: [HEOI2015]最短不公共子串(后缀自动机+序列自动机)

    题目描述 在虐各种最长公共子串.子序列的题虐的不耐烦了之后,你决定反其道而行之. 一个串的“子串”指的是它的连续的一段,例如bcd是abcdef的子串,但bde不是. 一个串的“子序列”指的是它的可以 ...

  5. BZOJ4032[HEOI2015]最短不公共子串——序列自动机+后缀自动机+DP+贪心

    题目描述 在虐各种最长公共子串.子序列的题虐的不耐烦了之后,你决定反其道而行之. 一个串的“子串”指的是它的连续的一段,例如bcd是abcdef的子串,但bde不是. 一个串的“子序列”指的是它的可以 ...

  6. BZOJ4032 [HEOI2015]最短不公共子串 【后缀自动机 + 序列自动机 + dp】

    题目链接 BZOJ4032 题解 首先膜\(hb\) 空手切神题 一问\(hash\),二问枚举 三问\(trie\)树,四问\(dp\) 南二巨佬神\(hb\) 空手吊打自动机 \(orz orz ...

  7. BZOJ4032 : [HEOI2015]最短不公共子串

    第一问: 对B串建立SAM,暴力枚举A的每个子串,在SAM上走,若失配则可行. 第二问: 设g[i][j]表示B串的第i个字符之后最早出现的字符j的位置,暴力枚举A的每个子串,按照g贪心地走,若失配则 ...

  8. 【BZOJ4032】[HEOI2015]最短不公共子串(后缀自动机,序列自动机)

    [BZOJ4032][HEOI2015]最短不公共子串(后缀自动机,序列自动机) 题面 BZOJ 洛谷 题解 数据范围很小,直接暴力构建后缀自动机和序列自动机,然后直接在两个自动机上进行\(bfs\) ...

  9. bzoj4032/luoguP4112 [HEOI2015]最短不公共子串(后缀自动机+序列自动机上dp)

    bzoj4032/luoguP4112 [HEOI2015]最短不公共子串(后缀自动机+序列自动机上dp) bzoj Luogu 题解时间 给两个小写字母串 $ A $ , $ B $ ,请你计算: ...

随机推荐

  1. guava快速入门(三)

    Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] ...

  2. php中类和对象的操作

    在类中用$this指代对象本身. 用self::指代类本身. $p1 = new Person('michael');//向Person类的构造函数__construct中传名字 echo($p1-& ...

  3. C# System.Timers.Timers的用法在工控设备上位中的用法

    这两天写设备的上位,由于要读取服务器上的数据库,通过WEBSERVICE访问数据库,我具体的做法是: 1.专门用Timer起线程执行,由于在用的时候报错,不能访问其他线程资源的错误,因此我用了委托的方 ...

  4. 一、hadoop单节点安装测试

    一.hadoop简介 相信你或多或少都听过hadoop这个名字,hadoop是一个开源的.分布式软件平台.它主要解决了分布式存储(hdfs)和分布式计算(mapReduce)两个大数据的痛点问题,在h ...

  5. 判断php变量是否定义,是否为空,是否为真的一览表

    分类: 使用 PHP 函数对变量 $x 进行比较 表达式 gettype() empty() is_null() isset() boolean : if($x) $x = ""; ...

  6. windbg .net 程序的死锁检测 常用方法(个人备份笔记)

    //死锁检测 .load sosex.dll :> !dlk :> !mk -a The mk command displays a call stack of the currently ...

  7. groovy对枚举的支持

    /** * Created by Jxy on 2019/1/3 15:42 * groovy对枚举的支持 */ enum CoffeeSize{ SHORT,SMALL,BIG,MUG } def ...

  8. C#读取Json文件

    C#读取Json文件并赋值给初始值 一.有Json文件如下(若用记事本编辑记得另存为-编码选择 U-TF8): 二.读取方法: using Newtonsoft.Json;using Newtonso ...

  9. C#可遍历的集合

    public class Product { /// <summary> /// 自增ID /// </summary> public int ID { get; set; } ...

  10. 03_netty实现聊天室功能

    [概述] 聊天室主要由两块组成:聊天服务器端(ChatRoomServer)和聊天客户端(ChatClient). [ 聊天服务器(ChatRoomServer)功能概述 ] 1.监听所有客户端的接入 ...