一、题目链接

  https://www.nowcoder.com/acm/contest/117/B

二、题意

  给定一组序列$a_1,a_2,\cdots,a_n$,表示初始序列$b_1,b_2,\cdots,b_n$经过$k$次变换得到的序列,让你输出输出序列$b_1,b_2,\dots,b_n$。

变换的规则是:
  在每一轮中,把$b_i$加到$b_{i+1}$上($1 \le i < n$),同时对$10^9+7$取模。做$k$轮。最后得到$a_1,a_2,\cdots,a_n$。

 三、思路

  列出计算步骤,得到如下表格:

$k$ $b_1$ $b_2$ $b_3$ $\cdots$ $b_n$
$1$ $b_1$  $b_1+b_2$   $b_1+b_2+b_3$ $\cdots$  $\sum\limits_{i=1}^{n}b_i$ 
$2$   $b_1$  $2*b_1+b_2$ $3*b_1+2*b_2+b_3$  $\cdots$  上一行的和 
$3$   $b_1$ $3*b_1+b_2$  $6*b_1+3*b_2+b_3$  $\cdots$  上一行的和 
 $\cdots$   $\cdots$   $\cdots$   $\cdots$   $\cdots$  $\cdots$ 

  拿$b_i$来找规律。可以发现,它的多项式系数与$k$的关系。从大到小的系数为如下表格:

$j=1$ $1$ $2$ $3$ $6$ $\cdots$ $k$
$j=2$ $1$ $3$ $6$ $10$ $\cdots$ $\frac{(1+k)*k}{2}$
$j=3$ $1$ $4$ $10$ $20$ $\cdots$ $\cdots$
$\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
$j=n$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$

  其中,$j$为到$i$的距离,且$j<i$。然后,把它转化成如下表格:

$j=1$ $C_1^1$ $C_2^1$ $C_3^1$ $C_4^1$ $\cdots$ $C_k^1$
$j=2$ $C_2^2$ $C_3^2$ $C_4^2$ $C_5^2$ $\cdots$ $C_{k+1}^2$
$j=3$ $C_3^3$ $C_4^3$ $C_5^3$ $C_6^3$ $\cdots$ $C_{k+2}^3$
$\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$
$j=n$ $C_n^n$ $C_{n+1}^n$ $C_{n+2}^n$ $C_{n+3}^n$ $\cdots$ $C_{k+n-1}^n$

  有了上述表格后,用lucas定理求出最后一列,时间复杂度$O(N^2*log(10^9+7))$,再$O(N^2)$复杂度求出每一项的初始值$b_i$即可。所以,总的复杂度为$O(T*N^2*log(10^9+7))$。

  注意,这题卡常卡的很厉害,需要对$k$分情况处理。如果$k$较小,$k \le 1000$,直接暴力。否则,用算法。

  另外,还要注意$k=0$的情况。

  求$C_n^m$,用的是这个式子:$C_n^m=\frac{n!}{(n-m)!*m!}=\frac{A_n^m}{m!}=\prod\limits_{i=1}^{m}\frac{n-m+i}{i}$

四、代码

/*---------------------template head-----------------------------*/
#include<bits/stdc++.h>
using namespace std;
#define pb(x) push_back(x)
#define mk(x, y) make_pair(x, y)
#define pln() putchar('\n')
#define cln() (cout << '\n')
#define fst first
#define snd second
#define MOD 1000000007LL
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
;

template <class T> inline void read(T &x) {
    int t;
    bool flag = false;
    ')) ;
    ';
     + t - ';
    if(flag) x = -x;
}

template<class T> T gcd(T a, T b) {
    return b ? gcd(b, a % b) : a;
}
/*---------------------template head-----------------------------*/

LL quick_mod(LL a, LL b, LL p) {
    LL ans = ;
    a %= p;
    while(b) {
        )ans = ans * a % p;
        a = a * a % p;
        b >>= ;
    }
    return ans % p;
}

LL C(LL n, LL m, LL p) {
    ;
    LL ans = ;
    ; i <= m; i++) {
        LL a = (n + i - m) % p;
        LL b = i % p;
        ans = ans * (a * quick_mod(b, p - , p) % p) % p;
    }
    return ans % p;
}

LL lucas(LL n, LL m, LL p) {
    ) ;
    return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
}

LL NN, K, a[MAXN], ans[MAXN], cc[MAXN], buf[MAXN];
int main() {
    //freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);
    int T;
    for(scanf("%d", &T); T--;) {
        read(NN), read(K);
        ; i <= NN; ++i)read(a[i]);
        )memcpy(ans + , a + , ]) * NN);
        ) {
            ans[] = a[];
            memcpy(buf + , a + , ]) * NN);
            ; i < K; ++i) {
                ; j <= NN; ++j) {
                    ans[j] = (buf[j] - buf[j - ] + MOD) % MOD;
                    ans[j] = (ans[j] + MOD) % MOD;
                }
                memcpy(buf + , ans + , ]) * NN);
            }
        }
        else {
            ; i <= NN; ++i)cc[i] = lucas(K + i - , i, MOD) % MOD;
            ans[] = a[];
            ; i <= NN; ++i) {
                LL sum = ;
                , p = i - ; p >= ; j++, p--) {
                    sum = (sum + cc[j] * ans[p]) % MOD;
                }
                ans[i] = (a[i] - sum + MOD) % MOD;
                ans[i] = (ans[i] + MOD) % MOD;
            }
        }
        ; i <= NN; ++i)printf("%lld%c", ans[i], i == NN ? '\n' : ' ');
    }
    ;
}

北京师范大学第十六届程序设计竞赛决赛-重现赛-B题的更多相关文章

  1. 北京师范大学第十六届程序设计竞赛决赛 I 如何办好比赛

    链接:https://www.nowcoder.com/acm/contest/117/I来源:牛客网 如何办好比赛 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他 ...

  2. 北京师范大学第十六届程序设计竞赛决赛 F 汤圆防漏理论

    链接:https://www.nowcoder.com/acm/contest/117/F来源:牛客网 汤圆防漏理论 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他 ...

  3. 北京师范大学第十六届程序设计竞赛决赛 C萌萌哒身高差

    链接:https://www.nowcoder.com/acm/contest/117/C来源:牛客网 萌萌哒身高差 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他 ...

  4. 福州大学第十五届程序设计竞赛_重现赛B题迷宫寻宝

    Problem B 迷宫寻宝 Accept: 52    Submit: 183Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem De ...

  5. 长春理工大学第十四届程序设计竞赛(重现赛)M.Orx Zone

    链接:https://ac.nowcoder.com/acm/contest/912/M 题意: Daenerys Stormborn, 风暴中出生的丹尼莉丝,the Unburnt, 烧不死的,Qu ...

  6. 长春理工大学第十四届程序设计竞赛(重现赛)L.Homework Stream

    链接:https://ac.nowcoder.com/acm/contest/912/L 题意: 作为大珩班尖子生,小r每天有很多作业要完成,例如工图.工图和工图. 很显然,做作业是要有顺序的.作业之 ...

  7. 长春理工大学第十四届程序设计竞赛(重现赛)J.Printout

    链接:https://ac.nowcoder.com/acm/contest/912/J 题意: 小r为了打校赛,他打算去打字社打印一份包含世界上所有算法的模板. 到了打字社,小r一看价格:总打印页数 ...

  8. 长春理工大学第十四届程序设计竞赛(重现赛)I.Fate Grand Order

    链接:https://ac.nowcoder.com/acm/contest/912/I 题意: Fate Grand Order是型月社发行的角色扮演类手机游戏,是著名的氪金抽卡"垃圾&q ...

  9. 长春理工大学第十四届程序设计竞赛(重现赛)H.Arithmetic Sequence

    题意: 数竞选手小r最喜欢做的题型是数列大题,并且每一道都能得到满分. 你可能不相信,但其实他发现了一个结论:只要是数列,无论是给了通项还是给了递推式,无论定义多复杂,都可以被搞成等差数列.这样,只要 ...

随机推荐

  1. 详解Python中re.sub--转载

    [背景] Python中的正则表达式方面的功能,很强大. 其中就包括re.sub,实现正则的替换. 功能很强大,所以导致用法稍微有点复杂. 所以当遇到稍微复杂的用法时候,就容易犯错. 所以此处,总结一 ...

  2. shell 输入不显示在监视器上

    #!/bin/bash read -s -p "Enter your password:" pass echo "your password is $pass" ...

  3. python 解压zip压缩包

    在当前路径解压zip压缩包,生成同名文件夹,内部目录结构与压缩包一致 import zipfile import os def un_zip(file_name): """ ...

  4. Composite(组合)

    意图: 将对象组合成树形结构以表示“部分-整体”的层次结构.C o m p o s i t e 使得用户对单个对象和组合对象的使用具有一致性. 适用性: 你想表示对象的部分-整体层次结构. 你希望用户 ...

  5. mysql获取随机数据的方法

    order by rand() 数据多了极慢,随机性非常好,适合非常小数据量的情况. 复制代码 代码如下: SELECT * FROM table_name AS r1 JOIN (SELECT (R ...

  6. spark 累加历史 + 统计全部 + 行转列

    spark 累加历史主要用到了窗口函数,而进行全部统计,则需要用到rollup函数 1  应用场景: 1.我们需要统计用户的总使用时长(累加历史) 2.前台展现页面需要对多个维度进行查询,如:产品.地 ...

  7. js 面试题总结

    面试题解析 window.number = 1; var obj = { number: 4, dbl: (function(){ console.log(obj.number); this.numb ...

  8. Java Spring-事务管理概述

    2017-11-11 23:05:39 事务(Transaction):是逻辑上一组操作,要么全都成功,要么全都失败. 一.事务的特性 原子性:事务不可分割 一致性:事务执行的前后,数据完整性保持一致 ...

  9. 偶数求1/2+1/4+...+1/n奇数1/1+1/3+...+1/n

    题目:编写一个函数,输入n为偶数时,调用函数求1/2+1/4+...+1/n,当输入n为奇数时,调用函数1/1+1/3+...+1/n Scanner scanner = new Scanner(Sy ...

  10. UVA-1604 Cubic Eight-Puzzle (双向BFS+状态压缩+限制搜索层数)

    题目大意:立体的八数码问题,一次操作是滚动一次方块,问从初始状态到目标状态的最少滚动次数. 题目分析:这道题已知初始状态和目标状态,且又状态数目庞大,适宜用双向BFS.每个小方块有6种状态,整个大方格 ...