题面

题面

题解

先化一波式子:

\[D = (A \cdot B - C)A^T
\]

\[= \sum_{i = 1}^{n}H_{1i}\cdot A^T_{i1}
\]

\[H_{1i} = (\sum_{j = 1}^{n}A_{1j} \cdot B_{ji}) - C_{1i}
\]

\[D = \sum_{i = 1}^{n}{((\sum_{j = 1}^{n}A_{1j} \cdot B_{ji}) - C_{1i}) A^T_{i1}}
\]

\[D = \sum_{i = 1}^{n}{((\sum_{j = 1}^{n}A_{1j} \cdot B_{ji}) - C_{1i}) A_{1i}}
\]

\[= \sum_{i = 1}^{n} \sum_{j = 1}^{n}A_j \cdot B_{ji} \cdot A_i - \sum_{i = 1}^{n}C_iA_i
\]

\[= \sum_{i = 1}^{n} \sum_{j = 1}^{n}A_i \cdot B_{ij} \cdot A_j - \sum_{i = 1}^{n}C_iA_i
\]

因此选\(i\)和\(j\)则得到\(B_{ij}\)的贡献,选\(i\)则花费\(C_i\)的代价。

因此我们有如下关系:选\((i, j)\)则必选\(i, j\).

因此建图方式如下:

  • 对于每个二元组\((i, j)\),我们连\(s --- > (i, j) : B_{ij}\)
  • 对于每个二元组\((i, j)\),我们连\((i, j) ---> i : inf , (i, j) ---> j : inf\)
  • 对于每个点\(i\),我们连\(i ---> t : C_i\)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 550
#define ac 1000000
#define maxn 3000000
#define inf 1000000000
//#define D printf("in line %d\n", __LINE__); int n, s, t, x, addflow, ans, all;
int B[AC][AC], C[AC];
int Head[ac], date[maxn], Next[maxn], haveflow[maxn], tot = 1;
int have[ac], good[ac], c[ac], last[ac];
int q[ac], head, tail; inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
} inline void upmin(int &a, int b) {if(b < a) a = b;}
inline void upmax(int &a, int b) {if(b > a) a = b;} inline void add(int f, int w, int S)
{
date[++ tot] = w, Next[tot] = Head[f], Head[f] = tot, haveflow[tot] = S;
date[++ tot] = f, Next[tot] = Head[w], Head[w] = tot, haveflow[tot] = 0;
//printf("%d --- > %d : %d\n", f, w, S);
} void bfs()
{
q[++ tail] = t, have[1] = c[t] = 1;
while(head < tail)
{
int x = q[++ head];
for(R i = Head[x]; i; i = Next[i])
{
int now = date[i];
if(!c[now] && haveflow[i ^ 1])
{
++ have[c[now] = c[x] + 1];
q[++ tail] = now;
}
}
}
memcpy(good, Head, sizeof(good));
} void aru()
{
while(x != s)
{
haveflow[last[x]] -= addflow;
haveflow[last[x] ^ 1] += addflow;
x = date[last[x] ^ 1];
}
ans -= addflow, addflow = inf;
} void ISAP()
{
bool done = false;
addflow = inf, x = s;
while(c[t] != all + 10)
{
if(x == t) aru();
done = false;
for(R i = good[x]; i; i = Next[i])
{
int now = date[i];
good[x] = i;
if(c[now] == c[x] - 1 && haveflow[i])
{
upmin(addflow, haveflow[i]);
last[now] = i, x = now, done = true;
break;
}
} if(!done)
{
int go = all + 9;
for(R i = Head[x]; i; i = Next[i])
if(c[date[i]] && haveflow[i]) upmin(go, c[date[i]]);
good[x] = Head[x];
if(!(-- have[c[x]])) break;
have[c[x] = go + 1] ++;
if(x != s) x = date[last[x] ^ 1];
}
}
printf("%d\n", ans);
} void pre()
{
n = read(), all = n * n + n, s = all + 1, t = s + 1;
for(R i = 1; i <= n; i ++)
for(R j = 1; j <= n; j ++) B[i][j] = read(), ans += B[i][j];
for(R i = 1; i <= n; i ++) C[i] = read();
} inline int id(int i, int j){return (i - 1) * n + j;} void build()
{
for(R i = 1; i <= n; i ++)
for(R j = 1; j <= n; j ++)
{
int ID = id(i, j);
add(s, ID, B[i][j]);
add(ID, n * n + i, inf), add(ID, n * n + j, inf);
}
for(R i = 1; i <= n; i ++) add(n * n + i, t, C[i]);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
build();
bfs();
ISAP();
// fclose(stdin);
return 0;
}

[TJOI2015]线性代数 网络流的更多相关文章

  1. [TJOI2015]线性代数(网络流)

    [TJOI2015]线性代数(最大权闭合子图,网络流) 为了提高智商,ZJY开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个n*n的矩阵B和一个1×n的矩阵C.求出一个1×n的01矩阵A ...

  2. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  3. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  4. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  5. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  6. 【LG3973】[TJOI2015]线性代数

    [LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...

  7. [Luogu 3973] TJOI2015 线性代数

    [Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...

  8. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  9. 【BZOJ】3996: [TJOI2015]线性代数

    题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...

随机推荐

  1. 解决 mybatis 的覆盖问题 以及避免手写大量mapper的方法

    只需要先实现覆盖不追加的方法: 然后再把所有需要改动mapper的方法抽离出来即可

  2. 我们一起学习WCF 第二篇WCF承载多个接口

    前言:现在王大叔养了大批猪,赚了很多钱.但是最近发现养鸡也可以赚很多钱,他就像扩展业务开始养鸡.又过两年他发现市场对狗的需求量很大,他开始养狗.那么他改怎么做呢,不可能去修改猪住的地方把鸭子和狗放里面 ...

  3. javaweb(二十)——JavaBean总结

    一.什么是JavaBean JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参的构造函数 属性必须私有化. 私有化的属性必须通过public类型的方法 ...

  4. .net mvc 使用ueditor的开发(官网没有net版本?)

    1.ueditor的下载导入 官网下载地址:https://ueditor.baidu.com/website/download.html · 介绍 有两种,一种开发版,一种Mini版,分别长这样: ...

  5. linux中匹配正确的ip地址

    1.假设IP地址是规范的,没有出错误的 sed -n "/[0-9]\{1,3\}.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}/p" test ...

  6. Python基础灬高阶函数(lambda,filter,map,reduce,zip)

    高阶函数 lambda函数 关键字lambda表示匿名函数,当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便. lambda函数省略函数名,冒号前为参数,冒号后函数体. # ...

  7. 华为笔试——C++转换字符串问题

    题目:转换字符串 题目介绍: 将输入字符串中下标为偶数的字符连成一个新的字符串输出,需要注意两点: 1. 如果输入字符串的长度超过20,则转换失败,返回“ERROR!”字符串: 2. 输入字符串只能由 ...

  8. 选题博客:北航iCourse课程信息平台

    1. 用户调查 在选题的时候,我们面向北航所有本科在读本科生,发布了<北航信息平台用户调查>.此次问卷调查共回收有效问卷95份. 1.1 功能需求调查 调查其中一项是让同学们对平台功能进行 ...

  9. 深入react技术栈解读

    1. react实现virtual DOM ,如果要改变页面的内容,还是需要执行DOM操作,比原生操作DOM多了virtualDOM的操作(计算,对比等), 应该是更耗性能??? 2. react特点 ...

  10. KETTLE并行

    1.转换的并行 转换的并行是改变复制的数量 上面的转换相当于下面的: 实际是把一个任务拆成三部分执行,相当于在一个数据库连接中做了三次查询,数据库连接的开销没有增加,但是有三个进程一起执行. 2.jo ...