聊聊flink的CsvTableSource
序
本文主要研究一下flink的CsvTableSource
TableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/TableSource.scala
trait TableSource[T] {
/** Returns the [[TypeInformation]] for the return type of the [[TableSource]].
* The fields of the return type are mapped to the table schema based on their name.
*
* @return The type of the returned [[DataSet]] or [[DataStream]].
*/
def getReturnType: TypeInformation[T]
/**
* Returns the schema of the produced table.
*
* @return The [[TableSchema]] of the produced table.
*/
def getTableSchema: TableSchema
/**
* Describes the table source.
*
* @return A String explaining the [[TableSource]].
*/
def explainSource(): String =
TableConnectorUtil.generateRuntimeName(getClass, getTableSchema.getFieldNames)
}
TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource
BatchTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/BatchTableSource.scala
trait BatchTableSource[T] extends TableSource[T] {
/**
* Returns the data of the table as a [[DataSet]].
*
* NOTE: This method is for internal use only for defining a [[TableSource]].
* Do not use it in Table API programs.
*/
def getDataSet(execEnv: ExecutionEnvironment): DataSet[T]
}
BatchTableSource继承了TableSource,它定义了getDataSet方法
StreamTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/StreamTableSource.scala
trait StreamTableSource[T] extends TableSource[T] {
/**
* Returns the data of the table as a [[DataStream]].
*
* NOTE: This method is for internal use only for defining a [[TableSource]].
* Do not use it in Table API programs.
*/
def getDataStream(execEnv: StreamExecutionEnvironment): DataStream[T]
}
StreamTableSource继承了TableSource,它定义了getDataStream方法
CsvTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/CsvTableSource.scala
class CsvTableSource private (
private val path: String,
private val fieldNames: Array[String],
private val fieldTypes: Array[TypeInformation[_]],
private val selectedFields: Array[Int],
private val fieldDelim: String,
private val rowDelim: String,
private val quoteCharacter: Character,
private val ignoreFirstLine: Boolean,
private val ignoreComments: String,
private val lenient: Boolean)
extends BatchTableSource[Row]
with StreamTableSource[Row]
with ProjectableTableSource[Row] {
def this(
path: String,
fieldNames: Array[String],
fieldTypes: Array[TypeInformation[_]],
fieldDelim: String = CsvInputFormat.DEFAULT_FIELD_DELIMITER,
rowDelim: String = CsvInputFormat.DEFAULT_LINE_DELIMITER,
quoteCharacter: Character = null,
ignoreFirstLine: Boolean = false,
ignoreComments: String = null,
lenient: Boolean = false)www.michenggw.com = {
this(
path,
fieldNames,
fieldTypes,
fieldTypes.indices.toArray, // initially, all fields are returned
fieldDelim,
rowDelim,
quoteCharacter,
ignoreFirstLine,
ignoreComments,
lenient)
}
def this(path: String, fieldNames: Array[String]www.fengshen157.com/, fieldTypes: Array[TypeInformation[_]]) = {
this(path, fieldNames, fieldTypes, CsvInputFormat.DEFAULT_FIELD_DELIMITER,
CsvInputFormat.DEFAULT_LINE_DELIMITER, null, false, null, false)
}
if (fieldNames.length != fieldTypes.length) {
throw new TableException("Number of field names and field types must be equal.")
}
private val selectedFieldTypes = selectedFields.map(fieldTypes(_))
private val selectedFieldNames = selectedFields.map(fieldNames(_))
private val returnType: RowTypeInfo = new RowTypeInfo(selectedFieldTypes, selectedFieldNames)
override def getDataSet(execEnv: ExecutionEnvironment): DataSet[Row] = {
execEnv.createInput(createCsvInput(), returnType).name(explainSource())
}
/** Returns the [[RowTypeInfo]] for the return type of the [[CsvTableSource]]. */
override def getReturnType: www.leyouzaixian2.com RowTypeInfo = returnType
override def getDataStream(streamExecEnv: StreamExecutionEnvironment): DataStream[Row] = {
streamExecEnv.createInput(createCsvInput(), returnType).name(explainSource())
}
/** Returns the schema of the produced table. */
override def getTableSchema = new TableSchema(fieldNames, fieldTypes)
/** Returns a copy of [[TableSource]] with ability to project fields */
override def projectFields(fields: Array[Int]): CsvTableSource = {
val selectedFields = if (fields.isEmpty) Array(0) else fields
new CsvTableSource(
path,
fieldNames,
fieldTypes,
selectedFields,
fieldDelim,
rowDelim,
quoteCharacter,
ignoreFirstLine,
ignoreComments,
lenient)
}
private def createCsvInput(): RowCsvInputFormat = {
val inputFormat = new RowCsvInputFormat(
new Path(path),
selectedFieldTypes,
rowDelim,
fieldDelim,
selectedFields)
inputFormat.setSkipFirstLineAsHeader(ignoreFirstLine)
inputFormat.setLenient(www.dasheng178.com lenient)
if (quoteCharacter != null) {
inputFormat.enableQuotedStringParsing(quoteCharacter)
}
if (ignoreComments != null) {
inputFormat.setCommentPrefix(ignoreComments)
}
inputFormat
}
override def equals(other: Any): Boolean = other match {
case that: CsvTableSource => returnType == that.returnType &&
path == that.path &&
fieldDelim == that.fieldDelim &&
rowDelim == that.rowDelim &&
quoteCharacter == that.quoteCharacter &&
ignoreFirstLine == that.ignoreFirstLine &&
ignoreComments == that.ignoreComments &&
lenient == that.lenient
case _ => false
}
override def hashCode(www.hengda157.com): Int = {
returnType.hashCode()
}
override def explainSource(): String = {
s"CsvTableSource(" +
s"read fields: ${getReturnType.getFieldNames.mkString(", ")})"
}
}
CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来
getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串
小结
TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource;BatchTableSource继承了TableSource,它定义了getDataSet方法;StreamTableSource继承了TableSource,它定义了getDataStream方法
CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来;getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串
聊聊flink的CsvTableSource的更多相关文章
- 聊聊flink的NetworkEnvironmentConfiguration
本文主要研究一下flink的NetworkEnvironmentConfiguration NetworkEnvironmentConfiguration flink-1.7.2/flink-runt ...
- 聊聊flink Table的groupBy操作
本文主要研究一下flink Table的groupBy操作 Table.groupBy flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/tab ...
- 聊聊flink的AsyncWaitOperator
序本文主要研究一下flink的AsyncWaitOperator AsyncWaitOperatorflink-streaming-java_2.11-1.7.0-sources.jar!/org/a ...
- 聊聊flink的Async I/O
// This example implements the asynchronous request and callback with Futures that have the // inter ...
- 聊聊flink的log.file配置
本文主要研究一下flink的log.file配置 log4j.properties flink-release-1.6.2/flink-dist/src/main/flink-bin/conf/log ...
- [case49]聊聊flink的checkpoint配置
序 本文主要研究下flink的checkpoint配置 实例 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecut ...
- 聊聊flink的BlobStoreService
序 本文主要研究一下flink的BlobStoreService BlobView flink-release-1.7.2/flink-runtime/src/main/java/org/apache ...
- [源码分析] 从源码入手看 Flink Watermark 之传播过程
[源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...
- Flink与Spark Streaming在与kafka结合的区别!
本文主要是想聊聊flink与kafka结合.当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合. ...
随机推荐
- 小计Tomcat的调优思路
描述 最近在补充自己的短板,刚好整理到Tomcat调优这块,基本上面试必问,于是就花了点时间去搜集一下tomcat调优 都调了些什么,先记录一下调优手段,更多详细的原理和实现以后用到时候再来补充记录, ...
- Wince 中访问WCF服务
由于本文并非WinCE开发普及篇,所以一些WinCE开发和WCF开发的基础还请移步百度和谷歌寻找答案,然后结合本文开发出WinCE中如何访问WCF,谢谢. 开发环境 IDE:Visual Studio ...
- Bug 级别定义标准
缺陷种类 缺陷级别 详细说明 功能缺陷 Urgent (V级) 1.操作系统无法正常使用,死机,出现致命错误 2.数据丢失 3.被测试系统频繁崩溃,程序出错,使功能不能继续使用 4.性能与需求不一致 ...
- Unity FSM 有限状态机
翻译了一下unity wiki上对于有限状态机的案例,等有空时在详细写一下.在场景中添加两个游戏物体,一个为玩家并修改其Tag为Player,另一个为NPC为其添加NPCControl脚本,并为其将玩 ...
- iOS开发之多线程技术—GCD篇
本篇将从四个方面对iOS开发中GCD的使用进行详尽的讲解: 一.什么是GCD 二.我们为什么要用GCD技术 三.在实际开发中如何使用GCD更好的实现我们的需求 一.Synchronous & ...
- SQL语句--连接查询
一.连接查询有以下几种 1.内连接查询 select * from t1 inner join t2 on t1.x = t2.x; 返回有关联的行 2.外链接查询 以下写法都省略了 中间的 out ...
- JAVA学习笔记--简介几个常见关键字static、final、this、super
一.static static(静态的),可以放在类.方法.字段之前. 通常,当创建类时,就是在描述那个类的外观与行为.除非用 new 创建那个类的对象,否则,实际上并未获得任何对象.执行 new 来 ...
- mysql group by 取第一条
select * from table where id in (select max(id) from table group by sku) 说明:id是自增序列,sku是表中的一个字段
- SpringMVC Controller介绍及常用注解——@Controller
一 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model ,然后再把该Model ...
- ES6的新特性(6)——正则的扩展
正则的扩展 RegExp 构造函数 在 ES5 中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag). var regex = ne ...