序
  
  本文主要研究一下flink的CsvTableSource
  
  TableSource
  
  flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/TableSource.scala
  
  trait TableSource[T] {
  
  /** Returns the [[TypeInformation]] for the return type of the [[TableSource]].
  
  * The fields of the return type are mapped to the table schema based on their name.
  
  *
  
  * @return The type of the returned [[DataSet]] or [[DataStream]].
  
  */
  
  def getReturnType: TypeInformation[T]
  
  /**
  
  * Returns the schema of the produced table.
  
  *
  
  * @return The [[TableSchema]] of the produced table.
  
  */
  
  def getTableSchema: TableSchema
  
  /**
  
  * Describes the table source.
  
  *
  
  * @return A String explaining the [[TableSource]].
  
  */
  
  def explainSource(): String =
  
  TableConnectorUtil.generateRuntimeName(getClass, getTableSchema.getFieldNames)
  
  }
  
  TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource
  
  BatchTableSource
  
  flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/BatchTableSource.scala
  
  trait BatchTableSource[T] extends TableSource[T] {
  
  /**
  
  * Returns the data of the table as a [[DataSet]].
  
  *
  
  * NOTE: This method is for internal use only for defining a [[TableSource]].
  
  * Do not use it in Table API programs.
  
  */
  
  def getDataSet(execEnv: ExecutionEnvironment): DataSet[T]
  
  }
  
  BatchTableSource继承了TableSource,它定义了getDataSet方法
  
  StreamTableSource
  
  flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/StreamTableSource.scala
  
  trait StreamTableSource[T] extends TableSource[T] {
  
  /**
  
  * Returns the data of the table as a [[DataStream]].
  
  *
  
  * NOTE: This method is for internal use only for defining a [[TableSource]].
  
  * Do not use it in Table API programs.
  
  */
  
  def getDataStream(execEnv: StreamExecutionEnvironment): DataStream[T]
  
  }
  
  StreamTableSource继承了TableSource,它定义了getDataStream方法
  
  CsvTableSource
  
  flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/CsvTableSource.scala
  
  class CsvTableSource private (
  
  private val path: String,
  
  private val fieldNames: Array[String],
  
  private val fieldTypes: Array[TypeInformation[_]],
  
  private val selectedFields: Array[Int],
  
  private val fieldDelim: String,
  
  private val rowDelim: String,
  
  private val quoteCharacter: Character,
  
  private val ignoreFirstLine: Boolean,
  
  private val ignoreComments: String,
  
  private val lenient: Boolean)
  
  extends BatchTableSource[Row]
  
  with StreamTableSource[Row]
  
  with ProjectableTableSource[Row] {
  
  def this(
  
  path: String,
  
  fieldNames: Array[String],
  
  fieldTypes: Array[TypeInformation[_]],
  
  fieldDelim: String = CsvInputFormat.DEFAULT_FIELD_DELIMITER,
  
  rowDelim: String = CsvInputFormat.DEFAULT_LINE_DELIMITER,
  
  quoteCharacter: Character = null,
  
  ignoreFirstLine: Boolean = false,
  
  ignoreComments: String = null,
  
  lenient: Boolean = false)www.michenggw.com = {
  
  this(
  
  path,
  
  fieldNames,
  
  fieldTypes,
  
  fieldTypes.indices.toArray, // initially, all fields are returned
  
  fieldDelim,
  
  rowDelim,
  
  quoteCharacter,
  
  ignoreFirstLine,
  
  ignoreComments,
  
  lenient)
  
  }
  
  def this(path: String, fieldNames: Array[String]www.fengshen157.com/, fieldTypes: Array[TypeInformation[_]]) = {
  
  this(path, fieldNames, fieldTypes, CsvInputFormat.DEFAULT_FIELD_DELIMITER,
  
  CsvInputFormat.DEFAULT_LINE_DELIMITER, null, false, null, false)
  
  }
  
  if (fieldNames.length != fieldTypes.length) {
  
  throw new TableException("Number of field names and field types must be equal.")
  
  }
  
  private val selectedFieldTypes = selectedFields.map(fieldTypes(_))
  
  private val selectedFieldNames = selectedFields.map(fieldNames(_))
  
  private val returnType: RowTypeInfo = new RowTypeInfo(selectedFieldTypes, selectedFieldNames)
  
  override def getDataSet(execEnv: ExecutionEnvironment): DataSet[Row] = {
  
  execEnv.createInput(createCsvInput(), returnType).name(explainSource())
  
  }
  
  /** Returns the [[RowTypeInfo]] for the return type of the [[CsvTableSource]]. */
  
  override def getReturnType: www.leyouzaixian2.com RowTypeInfo = returnType
  
  override def getDataStream(streamExecEnv: StreamExecutionEnvironment): DataStream[Row] = {
  
  streamExecEnv.createInput(createCsvInput(), returnType).name(explainSource())
  
  }
  
  /** Returns the schema of the produced table. */
  
  override def getTableSchema = new TableSchema(fieldNames, fieldTypes)
  
  /** Returns a copy of [[TableSource]] with ability to project fields */
  
  override def projectFields(fields: Array[Int]): CsvTableSource = {
  
  val selectedFields = if (fields.isEmpty) Array(0) else fields
  
  new CsvTableSource(
  
  path,
  
  fieldNames,
  
  fieldTypes,
  
  selectedFields,
  
  fieldDelim,
  
  rowDelim,
  
  quoteCharacter,
  
  ignoreFirstLine,
  
  ignoreComments,
  
  lenient)
  
  }
  
  private def createCsvInput(): RowCsvInputFormat = {
  
  val inputFormat = new RowCsvInputFormat(
  
  new Path(path),
  
  selectedFieldTypes,
  
  rowDelim,
  
  fieldDelim,
  
  selectedFields)
  
  inputFormat.setSkipFirstLineAsHeader(ignoreFirstLine)
  
  inputFormat.setLenient(www.dasheng178.com lenient)
  
  if (quoteCharacter != null) {
  
  inputFormat.enableQuotedStringParsing(quoteCharacter)
  
  }
  
  if (ignoreComments != null) {
  
  inputFormat.setCommentPrefix(ignoreComments)
  
  }
  
  inputFormat
  
  }
  
  override def equals(other: Any): Boolean = other match {
  
  case that: CsvTableSource => returnType == that.returnType &&
  
  path == that.path &&
  
  fieldDelim == that.fieldDelim &&
  
  rowDelim == that.rowDelim &&
  
  quoteCharacter == that.quoteCharacter &&
  
  ignoreFirstLine == that.ignoreFirstLine &&
  
  ignoreComments == that.ignoreComments &&
  
  lenient == that.lenient
  
  case _ => false
  
  }
  
  override def hashCode(www.hengda157.com): Int = {
  
  returnType.hashCode()
  
  }
  
  override def explainSource(): String = {
  
  s"CsvTableSource(" +
  
  s"read fields: ${getReturnType.getFieldNames.mkString(", ")})"
  
  }
  
  }
  
  CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
  
  ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来
  
  getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串
  
  小结
  
  TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource;BatchTableSource继承了TableSource,它定义了getDataSet方法;StreamTableSource继承了TableSource,它定义了getDataStream方法
  
  CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
  
  ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来;getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串

聊聊flink的CsvTableSource的更多相关文章

  1. 聊聊flink的NetworkEnvironmentConfiguration

    本文主要研究一下flink的NetworkEnvironmentConfiguration NetworkEnvironmentConfiguration flink-1.7.2/flink-runt ...

  2. 聊聊flink Table的groupBy操作

    本文主要研究一下flink Table的groupBy操作 Table.groupBy flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/tab ...

  3. 聊聊flink的AsyncWaitOperator

    序本文主要研究一下flink的AsyncWaitOperator AsyncWaitOperatorflink-streaming-java_2.11-1.7.0-sources.jar!/org/a ...

  4. 聊聊flink的Async I/O

    // This example implements the asynchronous request and callback with Futures that have the // inter ...

  5. 聊聊flink的log.file配置

    本文主要研究一下flink的log.file配置 log4j.properties flink-release-1.6.2/flink-dist/src/main/flink-bin/conf/log ...

  6. [case49]聊聊flink的checkpoint配置

    序 本文主要研究下flink的checkpoint配置 实例 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecut ...

  7. 聊聊flink的BlobStoreService

    序 本文主要研究一下flink的BlobStoreService BlobView flink-release-1.7.2/flink-runtime/src/main/java/org/apache ...

  8. [源码分析] 从源码入手看 Flink Watermark 之传播过程

    [源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...

  9. Flink与Spark Streaming在与kafka结合的区别!

    本文主要是想聊聊flink与kafka结合.当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合. ...

随机推荐

  1. MSP430的JTAG接口和BSW接口

    1.JTAG口,JTAG引脚如下定义:  单片机TCK——测试时钟输入,接仿真器7脚  单片机TDI——测试数据输入,接仿真器2脚  单片机TDO——测试数据输出,接仿真器1脚  单片机TMS——测试 ...

  2. C#课后小作业

    有关C#基础的练手 跟大家一起分享下 1.让用户输入一个100以内的数 打印1-100之间所有的数,用户输入的数除外 2.让用户输入一个100以内的数 打印1-这个数之间所有的数的和 3.使用一个fo ...

  3. CentOS 6.5关闭防火墙

    关闭命令:  service iptables stop 永久关闭防火墙:chkconfig iptables off 两个命令同时运行,运行完成后查看防火墙关闭状态 service iptables ...

  4. Android 自动化测试及性能数据采集的 Python 脚本

    文主要介绍一个基于 uiautomator2 封装的一个 Python 库 android-catcher ,该库的功能主要有对 Android 设备进行 UI 自动化测试 和 采集手机性能数据 ,适 ...

  5. 用Python实现检测视频真伪?

    译者注:本文以一段自打24小时耳光的视频为例子,介绍了如何利用均值哈希算法来检查重复视频帧.以下是译文. 有人在网上上传了一段视频,他打了自己24个小时的耳光.他真的这么做了吗?看都不用看,肯定没有! ...

  6. Oracle创建表管理表

    --创建图书表 create table books_lib ( book_id ) primary key, --unique&not null book_name ) not null ) ...

  7. Python登录,输入三次密码

    第一段python代码,写了一天,总算不报错了,值得纪念. 基本要求: 写一个登录界面,登录三次锁定用户 1. 包含一个用户信息文件,用户名和密码 2.黑名单文件 过程: 1.先检查是否在黑名单中,如 ...

  8. CentOS7使用阿里源安装最新版Docker

    卸载已经安装的Docker sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker ...

  9. [转]Zookeeper系列(一)

    一.ZooKeeper的背景 1.1 认识ZooKeeper ZooKeeper---译名为“动物园管理员”.动物园里当然有好多的动物,游客可以根据动物园提供的向导图到不同的场馆观赏各种类型的动物,而 ...

  10. struts-resultType属性

    1.默认dispatcher:forward方式,服务器端跳转 2.redirect:客户端跳转 3.chain:Action转发,forward方式,服务器端跳转action 4.redirectA ...