【CF528D】Fuzzy Search(FFT)

题面

给定两个只含有\(A,T,G,C\)的\(DNA\)序列

定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符\(c\),问给定串\(T\)在\(S\)中出现了几次。

\(|S|,|T|,K<=200000\)

题解

字符集很小,可以分开进行\(FFT\)。

现在的匹配的定义为距离当前位置\(K\)以内的所有字符中是否含有这个字符,如果有设置为\(1\),没有就是\(0\),把字符分开做\(FFT\)然后相加,检查是否等于\(|T|\)即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 888888
const double Pi=acos(-1);
struct Complex{double a,b;}A[MAX],B[MAX],W[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.b*b.a+a.a*b.b};}
int r[MAX],N,n,m,l,K;
int ss[4][MAX],Ans[MAX];
char S[MAX],T[MAX],Box[4]={'A','T','G','C'};
void FFT(Complex *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=w*P[i+j+k];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
if(opt==-1)for(int i=0;i<N;++i)P[i].a/=N;
}
void Clear(){for(int i=0;i<N;++i)A[i].a=B[i].a=A[i].b=B[i].b=0;}
int main()
{
scanf("%d%d%d",&n,&m,&K);
for(N=1;N<=(n+m-2);N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
scanf("%s",S);scanf("%s",T);
for(int i=1;i<=n;++i)
for(int k=0;k<4;++k)
if(S[i-1]==Box[k])ss[k][i]++;
for(int i=1;i<=n;++i)
for(int k=0;k<4;++k)ss[k][i]+=ss[k][i-1];
for(int k=0;k<4;++k)
{
Clear();
for(int i=0;i<n;++i)
if(ss[k][min(n,i+K+1)]-ss[k][max(0,i-K)])
A[i].a=1;
for(int i=0;i<m;++i)
if(T[m-i-1]==Box[k])B[i].a=1;
FFT(A,1);FFT(B,1);
for(int i=0;i<N;++i)A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=m-1;i<n;++i)Ans[i-m+1]+=(int)(A[i].a+0.5);
}
int ans=0;
for(int i=0;i<n;++i)if(Ans[i]==m)++ans;
printf("%d\n",ans);
return 0;
}

【CF528D】Fuzzy Search(FFT)的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  3. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  4. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  5. 【BZOJ3527】[ZJOI2014] 力(FFT)

    题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  6. 【数学】快速傅里叶变换(FFT)

    快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...

  7. B - Fuzzy Search (FFT)

    题目链接:https://cn.vjudge.net/contest/281959#problem/B 题目大意:给你n,m,k.然后输入两个字符串,n代表第一个字符串s1,m代表第二个字符串s2,然 ...

  8. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  9. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

随机推荐

  1. itchat个人练习 语音与文本图灵测试例程

    背景介绍 itchat是一个开源的微信个人号接口,使用python调用微信从未如此简单. 使用不到三十行的代码,你就可以完成一个能够处理所有信息的微信机器人. 官方文档参考https://itchat ...

  2. VS2013只显示会附加到进程,无法启动调试

    今天在使用VS2013的时候,打开突然发现,只显示附加到进程,无法进行调试,调试位置显示灰色,到网上各处寻求答案,本以为是个大问题,没想到只是个小问题.主要原因只是后台开太多东西了,导致VS2013运 ...

  3. JY播放器【网易云音乐破解下载】

    今天给大家带来一款神器----JY播放器.可以直接下载网易云音乐的歌曲. 目前已经支持平台(蜻蜓FM.喜马拉雅FM.网易云音乐.QQ音乐) 使用方法: 在电脑打开网易云音乐或者网站找到你要听的歌曲或歌 ...

  4. 多主机Docker容器的VLAN划分

    原文发表于cu:2016-06-06 参考文档: Docker网络的4种模式,pipework/ovs的简单使用等:http://www.infoq.com/cn/articles/docker-ne ...

  5. HPUX修改disk实例号--11.31only

    有时由于一些原因或者用户的要求,需要修改Disk的实例号,这里简单介绍如何手工进行修改. 在修改之前需要做一些准备工作,即先将stale状态的设备文件清理掉,具体步骤如下: 使用ioscan命令列出s ...

  6. cmake-cmake.1-3.11.4机翻

    指数 下一个 | 上一个 | CMake » git的阶段 git的主 最新发布的 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ...

  7. spring mvc ajaxfileupload文件上传返回json下载问题

    问题:使用spring mvc ajaxfileupload 文件上传在ie8下会提示json下载问题 解决方案如下: 服务器代码: @RequestMapping(value = "/ad ...

  8. Python20-Day02

    1.数据 数据为什么要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同类型的数据表示: 数据类型 数字(整形,长整形,浮点型,复数),字符串,列表,元组,字典,集合 2.字符串 1.按索引取 ...

  9. python3【基础】-文件操作

    1. python对文件操作流程: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件操作 关闭文件 现有如下文件: 昨夜寒蛩不住鸣. 惊回千里梦,已三更. 起来独自绕阶行. 人悄悄,帘外月胧明. ...

  10. Python中的构造函数

    Python中的构造函数是__init__函数.在Python中,子类如果定义了构造函数,而没有调用父类的,那么Python不会自动调用,也就是说父类的构造函数不会执行. 比如有test.py的mod ...