1801: [Ahoi2009]chess 中国象棋

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1995  Solved: 1160
[Submit][Status][Discuss]

Description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

Input

一行包含两个整数N,M,中间用空格分开.

Output

输出所有的方案数,由于值比较大,输出其mod 9999973

Sample Input

1 3

Sample Output

7

HINT

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6

 

题目链接:

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801

Solution

    刚开始以为是状压DP。。。卒。。。。

    被自己蠢哭了。。。。

    正解不是状压DP。。。复杂度显然不对。。。其实普通的DP就能解决。。。

    dp [ i ] [ j ] [ k ] 表示现在是第 i 行,已经有 j 列放了 2 个棋子,有 k 列放了 1 个棋子的状态数。。。

    状态转移方程就很显然了。。。。具体看代码吧。。。

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#define N 110
#define LL long long
#define mod 9999973
using namespace std;
inline int Read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m;
LL dp[N][N][N];
int main(){
LL ans=0;
n=Read();m=Read();
dp[0][0][0]=1;
for(int i=0;i<n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k+j<=m;k++){
if(!dp[i][j][k]) continue;
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%mod;
if(k>=2) dp[i+1][j+2][k-2]=(dp[i+1][j+2][k-2]+dp[i][j][k]*(k*(k-1)/2)%mod)%mod;
if(k>=1 && (m-j-k)>=1 ) dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*k*(m-j-k)%mod)%mod;
if((m-j-k)>=2) dp[i+1][j][k+2]=(dp[i+1][j][k+2]+dp[i][j][k]*((m-j-k)*(m-j-k-1)/2)%mod)%mod;
if(k>=1) dp[i+1][j+1][k-1]=(dp[i+1][j+1][k-1]+dp[i][j][k]*k%mod)%mod;
if((m-j-k)>=1) dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*(m-j-k)%mod)%mod;
}
}
}
for(int j=0;j<=m;j++)
for(int k=0;k+j<=m;k++)
ans=(ans+dp[n][j][k])%mod;
printf("%lld\n",ans);
return 0;
}

  

  

This passage is made by Iscream-2001.

BZOJ 1801--中国象棋(DP)的更多相关文章

  1. BZOJ 1801中国象棋 DP

    1801: [Ahoi2009]chess 中国象棋 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1426  Solved: 826[Submit][ ...

  2. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  3. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

  4. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  5. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  6. BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...

  7. JZOJ 1667 ( bzoj 1801 ) [ AHOI 2009 ] 中国象棋 —— DP

    题目:https://jzoj.net/senior/#main/show/1667 首先,一行.一列最多只有 2 个炮: 所以记录一下之前有多少行有 0/1/2 个炮,转移即可: 注意取模!小心在某 ...

  8. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  9. P2051 [AHOI2009]中国象棋——DP(我是谁,我在哪,为什么)

    象棋,给你棋盘大小,然后放炮(炮的数量不限),不能让炮打到其他的炮,问方案数: 数据n,m<=200; 状态压缩似乎能做,但是我不会: 因为只要状态数,所以不必纠结每种状态的具体情况: 可以想出 ...

随机推荐

  1. 【325】python**:selenium

    参考:selenium安装方式 参考:Selenium2(Webdriver)+Python处理浏览器弹窗

  2. 归纳整理Linux下C语言常用的库函数----文件操作

    在没有IDE的时候,记住一些常用的库函数的函数名.参数.基本用法及注意事项是很有必要的. 参照Linux_C_HS.chm的目录,我大致将常用的函数分为一下几类: 1. 内存及字符串控制及操作 2. ...

  3. canvas动画--demo

    canvas动画:bubble

  4. Windows NT

    ---------siwuxie095                 Windows NT,全称 Microsoft Windows New Technology     (无关小贴士:NTFS 全 ...

  5. Python打包工具

    打包Python应用,使用工具: 1.Linux和Windows下,使用pyinstaller pyinstaller -F -w XXX.py 在当前文件夹下生成两个文件夹:build .dist ...

  6. Associate File Type with Qt In Mac Os and Win

    Win Registry Question One day, my boss want me to finish one function which let the users can double ...

  7. PhpStorm (强大的PHP开发环境)2017.3.2 附注册方法

    最新版PhpStorm 2017正式版改进了PHP 7支持,改进代码完成功能. PhpStorm 是最好的PHP开发工具,使用它进行PHP开发将会让你感觉到编程的乐趣. 快乐无极终于从oschina看 ...

  8. python性能测试脚本-乾颐堂

    废话不多说,直接上代码. import httplib import urllib import time import json     class Transaction(object):     ...

  9. git忽略某个文件

    data/config/config.ini.php

  10. redis windows下安装

    1.下载redis windows文件包 下载地址 2.解压文件包 复制压缩包地址 3.进入cmd 命令行 cd进入redis文件包目录 4.执行 redis-server.exe  使用netsta ...