题面

传送门

这题有两种方法(然而两种我都想不到)

方法一

前置芝士

笛卡尔定理

我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径

若在平面上有两两相切,且六个切点互不相同的四个圆,设其曲率分别为\(k1,k2,k3,k4\)(若该圆和其它所有圆都外切,则其曲率取正,否则曲率取负),则有

\[(k1+k2+k3+k4)^2=2(k1^2+k2^2+k3^2+k4^2)
\]

类似的,若是空间中有两两相切且切点互不相同的五个球体,则有

\[(k1+k2+k3+k4+k5)^2=3(k1^2+k2^2+k3^2+k4^2+k5^2)
\]

题解

首先那个粉色圆的直径就是\(R-r\),于是我们现在知道前三个圆的半径了

上面的柿子可以看做一个关于\(k4\)的方程,化简一下可得

\[k4^2-2(k1+k2+k3)k4+2(k1^2+k2^2+k3^2)-(k1+k2+k3)^2=0
\]

这方程一看就很不好解的样子……

想想我们初中时候学过的韦达定理,对于方程\(ax^2+bx+c=0\),设它的两个解为\(x_1,x_2\),则有

\[x_1+x_2=-{b\over a}
\]

设\(k3\)代表绿圆\(i\)的曲率,\(k2\)代表黄圆的曲率,\(k1\)代表最大的圆的曲率,我们要求的就是与这三个圆都相切的圆的曲率……

但是这里是两个解的和的形式怎么办丫……

冷静想想,和这三个圆都相切的圆,除了绿圆\(i+1\),似乎只剩下绿圆\(i-1\)?而\(i-1\)的曲率我们之前已经知道了?

那么我们就可以\(O(n)\)递推了,时间复杂度\(O(nT)\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res;R char ch;
while((ch=getc())>'9'||ch<'0');
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res;
}
int n,R1,R2,R3;double r1,r2,r3,r4,r5;
int main(){
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
R1=read(),R2=read(),n=read(),R3=R1-R2;
r1=-1.0/R1,r2=1.0/R2,r3=1.0/R3,r4=r1+r2+r3;
fp(i,2,n)r5=r3,r3=r4,r4=(r1+r2+r3)*2-r5;
printf("%.10lf\n",1.0/r4);
}
return 0;
}

方法二

前置芝士

圆的反演

题解

我们设黄圆为\(A\),绿圆为\(B\),大圆就叫大圆,并且以下假设\(A\)和大圆的交点为原点,这三个圆共同的直径为\(x\)轴

如果我们以原点为反演中心,那么反演之后\(A\)和大圆会变成两条直线。又因为反演不改变相切关系,所以\(B\)反演之后就在这两条直线中间。显然\(B\)反演之后的圆心仍在\(x\)轴上

如果我们还要放上别的圆(假设一直往上放),由于它与这三个圆有唯一交点,所以肯定是被卡在两条直线中间,且刚好在之前的圆上方

因为这些圆的半径相同,我们可以\(O(1)\)得到第\(n\)个圆的圆心的坐标。之后我们连接圆心和原点,这条直线和圆的两个交点分别记为\(p1,p2\),把它们反演回来,对应的两个点之间的距离就是原来的第\(n\)个圆的半径了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
struct node{
double x,y;
inline node(){}
inline node(R double xx,R double yy):x(xx),y(yy){}
inline node operator +(const node &b)const{return node(x+b.x,y+b.y);}
inline node operator -(const node &b)const{return node(x-b.x,y-b.y);}
inline node operator *(const double &b)const{return node(x*b,y*b);}
inline double norm(){return sqrt(x*x+y*y);}
}p,pp,o;
int n,r1,r2;double r,lx,rx,ir;
void get(R node o,R double k,R double b){
double del=ir/sqrt(k*k+1);
p=node(o.x-del,k*(o.x-del)+b),
pp=node(o.x+del,k*(o.x+del)+b);
}
inline node inv(R node p){
double len=1.0/p.norm();
return p*(r*r*len*len);
}
int main(){
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
r1=read(),r2=read(),n=read(),r=r2*0.5;
lx=r*r/(r1*2),rx=r*r/(r2*2),ir=(rx-lx)*0.5;
o=node((lx+rx)*0.5,2*n*ir);
get(o,o.y/o.x,0);
printf("%.10lf\n",(inv(p)-inv(pp)).norm()*0.5);
}
return 0;
}

CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)的更多相关文章

  1. The Designer (笛卡尔定理+韦达定理 || 圆的反演)

    Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...

  2. HDU 6158 笛卡尔定理+韦达定理

    The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. HDU 6158 笛卡尔定理 几何

    LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...

  4. 爆炸几何之 CCPC网络赛 I - The Designer (笛卡尔定理)

    本文版权归BobHuang和博客园共有,不得转载.如想转载,请联系作者,并注明出处.   Nowadays, little hahahaha got a problem from his teache ...

  5. 圆的反演变换(HDU4773)

    题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看 ...

  6. 「HDU6158」 The Designer(圆的反演)

    题目链接多校8-1009 HDU - 6158 The Designer 题意 T(<=1200)组,如图在半径R1.R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n< ...

  7. 【 HDU4773 】Problem of Apollonius (圆的反演)

    BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...

  8. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  9. HOJ 13102 Super Shuttle (圆的反演变换)

    HOJ 13102 Super Shuttle 链接:http://49.123.82.55/online/?action=problem&type=show&id=13102 题意: ...

随机推荐

  1. C#中遍历各类数据集合的方法总结

    C#中遍历各类数据集合的方法总结: 1.枚举类型 //遍历枚举类型Sample的各个枚举名称 foreach (string sp in Enum.GetNames(typeof(Sample))) ...

  2. 基于HALCON的双目立体视觉系统实现

    双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法.双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得 ...

  3. VML元素的相关资料

    虽然VML已经过气了,但有时我还不得不使用它,下面是我收集或研究得到的一些东西. 判定一个元素是否为VML元素 function isVML(el) { if (el && el.no ...

  4. spring mvc请求参数中文乱码解决方案

    POST 请求 在web.xml中加上增加过滤器 <filter> <filter-name>encodingFilter</filter-name> <fi ...

  5. 搭建https+nginx服务器

    搭建https+nginx的服务器,主要是安装ngnix和使用openssl生成自签证书,并在nginx中配置的过程   一.安装环境 1.安装opnssl(ssl支持) https://www.op ...

  6. api.besttool.cn 相关接口的返回码code含义列表

    code 含义 0 请求成功 100 接口不存在 101 appid错误 102 secret错误 103 参数错误                    

  7. python之selenium调用js(execute_script)

    转载: http://www.cnblogs.com/fnng/p/3230768.html 本节重点: 调用js方法 execute_script(script, *args) 在当前窗口/框架 同 ...

  8. (OK) 国内常用NTP服务器地址及IP

    https://www.douban.com/note/171309770/ ntpdate s2c.time.edu.cn      北京邮电大学 ntpdate s2m.time.edu.cn   ...

  9. PYTHON 和R的对比

    为了鼓励新工具的出现,机器学习和数据分析领域似乎已经成了“开源”的天下.Python 和 R 语言都具有健全的生态系统,其中包括了很多开源工具和资源库,从而能够帮助任何水平层级的数据科学家展示其分析工 ...

  10. nancyfx 自定义路由module

    在源码的Nancy.Demo.CustomModule项目示例中 查看UglifiedNancyModule.cs文件 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 ...