题面

传送门

这题有两种方法(然而两种我都想不到)

方法一

前置芝士

笛卡尔定理

我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径

若在平面上有两两相切,且六个切点互不相同的四个圆,设其曲率分别为\(k1,k2,k3,k4\)(若该圆和其它所有圆都外切,则其曲率取正,否则曲率取负),则有

\[(k1+k2+k3+k4)^2=2(k1^2+k2^2+k3^2+k4^2)
\]

类似的,若是空间中有两两相切且切点互不相同的五个球体,则有

\[(k1+k2+k3+k4+k5)^2=3(k1^2+k2^2+k3^2+k4^2+k5^2)
\]

题解

首先那个粉色圆的直径就是\(R-r\),于是我们现在知道前三个圆的半径了

上面的柿子可以看做一个关于\(k4\)的方程,化简一下可得

\[k4^2-2(k1+k2+k3)k4+2(k1^2+k2^2+k3^2)-(k1+k2+k3)^2=0
\]

这方程一看就很不好解的样子……

想想我们初中时候学过的韦达定理,对于方程\(ax^2+bx+c=0\),设它的两个解为\(x_1,x_2\),则有

\[x_1+x_2=-{b\over a}
\]

设\(k3\)代表绿圆\(i\)的曲率,\(k2\)代表黄圆的曲率,\(k1\)代表最大的圆的曲率,我们要求的就是与这三个圆都相切的圆的曲率……

但是这里是两个解的和的形式怎么办丫……

冷静想想,和这三个圆都相切的圆,除了绿圆\(i+1\),似乎只剩下绿圆\(i-1\)?而\(i-1\)的曲率我们之前已经知道了?

那么我们就可以\(O(n)\)递推了,时间复杂度\(O(nT)\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res;R char ch;
while((ch=getc())>'9'||ch<'0');
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res;
}
int n,R1,R2,R3;double r1,r2,r3,r4,r5;
int main(){
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
R1=read(),R2=read(),n=read(),R3=R1-R2;
r1=-1.0/R1,r2=1.0/R2,r3=1.0/R3,r4=r1+r2+r3;
fp(i,2,n)r5=r3,r3=r4,r4=(r1+r2+r3)*2-r5;
printf("%.10lf\n",1.0/r4);
}
return 0;
}

方法二

前置芝士

圆的反演

题解

我们设黄圆为\(A\),绿圆为\(B\),大圆就叫大圆,并且以下假设\(A\)和大圆的交点为原点,这三个圆共同的直径为\(x\)轴

如果我们以原点为反演中心,那么反演之后\(A\)和大圆会变成两条直线。又因为反演不改变相切关系,所以\(B\)反演之后就在这两条直线中间。显然\(B\)反演之后的圆心仍在\(x\)轴上

如果我们还要放上别的圆(假设一直往上放),由于它与这三个圆有唯一交点,所以肯定是被卡在两条直线中间,且刚好在之前的圆上方

因为这些圆的半径相同,我们可以\(O(1)\)得到第\(n\)个圆的圆心的坐标。之后我们连接圆心和原点,这条直线和圆的两个交点分别记为\(p1,p2\),把它们反演回来,对应的两个点之间的距离就是原来的第\(n\)个圆的半径了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
struct node{
double x,y;
inline node(){}
inline node(R double xx,R double yy):x(xx),y(yy){}
inline node operator +(const node &b)const{return node(x+b.x,y+b.y);}
inline node operator -(const node &b)const{return node(x-b.x,y-b.y);}
inline node operator *(const double &b)const{return node(x*b,y*b);}
inline double norm(){return sqrt(x*x+y*y);}
}p,pp,o;
int n,r1,r2;double r,lx,rx,ir;
void get(R node o,R double k,R double b){
double del=ir/sqrt(k*k+1);
p=node(o.x-del,k*(o.x-del)+b),
pp=node(o.x+del,k*(o.x+del)+b);
}
inline node inv(R node p){
double len=1.0/p.norm();
return p*(r*r*len*len);
}
int main(){
// freopen("testdata.in","r",stdin);
for(int T=read();T;--T){
r1=read(),r2=read(),n=read(),r=r2*0.5;
lx=r*r/(r1*2),rx=r*r/(r2*2),ir=(rx-lx)*0.5;
o=node((lx+rx)*0.5,2*n*ir);
get(o,o.y/o.x,0);
printf("%.10lf\n",(inv(p)-inv(pp)).norm()*0.5);
}
return 0;
}

CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)的更多相关文章

  1. The Designer (笛卡尔定理+韦达定理 || 圆的反演)

    Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...

  2. HDU 6158 笛卡尔定理+韦达定理

    The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. HDU 6158 笛卡尔定理 几何

    LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...

  4. 爆炸几何之 CCPC网络赛 I - The Designer (笛卡尔定理)

    本文版权归BobHuang和博客园共有,不得转载.如想转载,请联系作者,并注明出处.   Nowadays, little hahahaha got a problem from his teache ...

  5. 圆的反演变换(HDU4773)

    题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看 ...

  6. 「HDU6158」 The Designer(圆的反演)

    题目链接多校8-1009 HDU - 6158 The Designer 题意 T(<=1200)组,如图在半径R1.R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n< ...

  7. 【 HDU4773 】Problem of Apollonius (圆的反演)

    BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...

  8. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  9. HOJ 13102 Super Shuttle (圆的反演变换)

    HOJ 13102 Super Shuttle 链接:http://49.123.82.55/online/?action=problem&type=show&id=13102 题意: ...

随机推荐

  1. Media Queries 媒体查询

    1.什么是媒体查询 媒体查询可以让我们根据设备显示器的特性(如视口宽度.屏幕比例.设备方向:横向或纵向)为其设定CSS样式,媒体查询由媒体类型和一个或多个检测媒体特性的条件表达式组成.媒体查询中可用于 ...

  2. random.nextint()

    自从JDK最初版本发布起,我们就可以使用java.util.Random类产生随机数了.在JDK1.2中,Random类有了一个名为nextInt()的方法: public int nextInt(i ...

  3. 迷你MVVM框架 avalonjs 1.3发布

    性能得到大幅改良的avalon1.3发布了. 修复$outer BUG 修复IE6-8下扫描加载Flash资源的OBJECT标签时,遇到它既没有innerHTML也没有getAttributeNode ...

  4. 可用于nodejs的SuperAgent(ajax API)

    简单示例: import request from 'superagent';//引用声明 request.post(api) .withCredentials()//跨域 .end((err, re ...

  5. sort_contours_xld算子的几种排序方式研究

    算子sort_contours_xld算子有5种排序方式,即: 'upper_left': The position is determined by the upper left corner of ...

  6. PHP(八)数组

  7. java经典开发模式

    Java Web开发方案有多种可供选择,这里列举一些经典的开发模式进行横向比较,为Java Web的开发模式选择提供参考.除此之外还有好多方案(如Tapestry和Wicket等等)并不了解,这里就不 ...

  8. Linux系统的运行级的概念

    Linux OS 将操作 环境分为以下7个等级,即 0:关机 1:单用户模式(单用户.无网络) 2:无网络支持的多用户模式(多用户.无网络) 3:有网络支持的多用户模式(多用户.有网络) 4:保留,未 ...

  9. day15(生成器send方法,递归,匿名函数,内置函数)

    一,复习 ''' 1.带参装饰器 - 自定义 | wraps def wrap(info) def outer1(func): from functools import wraps @wraps(f ...

  10. Postgres-XL9.5r1.6 搭建

    Postgres-XL9.5r1.6 安装部署1,环境准备 关闭防护墙 关闭selinux 下载依赖 yum install -y flex bison readline-devel zlib-dev ...