S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 4091    Accepted Submission(s): 1760

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:





  The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.



  The players take turns chosing a heap and removing a positive number of beads from it.



  The first player not able to make a move, loses.





Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:





  Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).



  If the xor-sum is 0, too bad, you will lose.



  Otherwise, move such that the xor-sum becomes 0. This is always possible.





It is quite easy to convince oneself that this works. Consider these facts:



  The player that takes the last bead wins.



  After the winning player's last move the xor-sum will be 0.



  The xor-sum will change after every move.





Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win. 



Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove
a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it? 



your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position.
This means, as expected, that a position with no legal moves is a losing position.
 
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the
number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
 
Sample Output
LWW
WWL
 
Source
 


这也是一道经典SG函数的题目。
有关于SG函数的解,能够戳这个,非常具体→http://blog.csdn.net/lttree/article/details/24886205
这道题题意:
我就按着例子格式来说吧:
先输入一个K,表示取数集合的个数。(K为0,则结束)
后面跟k个数,表示取数集合的数(就是每次仅仅能取这几个数量的物品)
然后会跟一个M,表示有M次询问。
然后接下来M行,每行先有一个N,表示有多少堆物品。
N后跟着N个数,表示每堆物品数量。

由于,OJ后台的操作,输入和输出是分开的(事实上就是将你的程序的答案存成一个TXT文件,然后和
标准答案TXT文件进行二进制的比較)
所以,我每一个N都直接输出'L'或者'W‘,
在M行结束时,换行,没实用数组来存答案。
PS:用scanf比cin快80MS


/************************************************
*************************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : S-Nim *
*Source: hdu 1536 *
* Hint : SG *
*************************************************
*************************************************/
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 10001
int f[N],sg[N];
bool mex[N];
void get_sg(int t,int n)
{
int i,j;
memset(sg,0,sizeof(sg));
for(i=1;i<=n;i++)
{
memset(mex,0,sizeof(mex));
// 对于属于g(x)后继的数置1
for( j=1 ;j<=t && f[j]<=i ;j++ )
mex[sg[i-f[j]]]=1;
// 找到最小不属于该集合的数
for( j=0 ; j<=n ; j++ )
if(!mex[j])
break;
sg[i] = j;
}
}
int main()
{
int k,m,n,i,t,temp;
while( scanf("%d",&k) && k )
{
for(i=1;i<=k;++i)
scanf("%d",&f[i]);
sort(f+1,f+k+1);
get_sg(k,N);
scanf("%d",&m);
while(m--)
{
temp=0;
scanf("%d",&n);
for(i=0;i<n;++i)
{
scanf("%d",&t);
temp^=sg[t];
}
if( !temp ) printf("L");
else printf("W");
}
printf("\n");
}
return 0;
}

ACM-SG函数之S-Nim——hdu1536 hdu1944 poj2960的更多相关文章

  1. 最浅谈的SG函数

    [更新] Nim游戏的经验: 每次最多取m个——%(m+1) 阶梯nim——奇数位无视,看偶数位互相独立,成一堆一堆的石子 . . . . 既然被征召去汇总算法..那么挑个简单点的SG函数好了.. 介 ...

  2. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  3. HDU1536:S-Nim(sg函数)

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  5. Nim 博弈和 sg 函数

    sg 函数 参考 通俗易懂 论文 几类经典的博弈问题 阶梯博弈: 只考虑奇数号楼梯Nim,若偶数楼梯只作容器,那么游戏变为Nim.题目 翻转硬币: 局面的SG值为局面中每个正面朝上的棋子单一存在时的S ...

  6. hdu-1536 S-Nim SG函数

    http://acm.hdu.edu.cn/showproblem.php?pid=1536 给出能够取的方法序列,然后求基本石子堆问题. 只要用S序列去做转移即可. 注意has初始化的一些技巧 #i ...

  7. hdu 5795 A Simple Nim 博弈sg函数

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Pro ...

  8. HDU 3032 Nim or not Nim? (sg函数)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

随机推荐

  1. js中获取css样式的两种方式

    1. 对象.style.样式名  弊端就是只能获取行内样式 2.window.getComputedStyle(对象,null); 最好用第二种方式 <!DOCTYPE html> < ...

  2. DOM基础操作(一)

    DOM的基本操作有四种,我们会逐一给大家进行展示 增加操作 1.创建元素节点 createElement 我们可以通过document.createElement(‘div’);这个方法来创建一个元素 ...

  3. 在 Ubuntu上使用 MySQL

    MySQL 安装配置 https://help.ubuntu.com/12.04/serverguide/mysql.html MySQL Manual http://dev.mysql.com/do ...

  4. curl 模拟发起百度地图API post请求

    注:开始做的是get请求,比较简单,然后又查询了一番就做成了post请求,有几个地方特别说明一下: 一,$address,是必须传的,$city可不传: 二,ak跟之前的key一直,需要申请,我的好像 ...

  5. C# 读取config

    控制台应用程序 App.config: AppSettings.config: Program.cs: string a = ConfigurationManager.AppSettings[&quo ...

  6. Activiti 数据库表自动生成策略

    Activiti 引擎启动时默认会检测数据库版本与程序版本是否相符,不相符就会抛出异常停止引擎的初始化. 这一策略可以通过引擎的初始化配置参数databaseSchemaUpdate来控制, 如下图的 ...

  7. HBase性能优化方法总结

    1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数 ...

  8. Oracle 截取指定长度的字符

    去掉回车,换行符号,截取指定长度的字符 具体代码示例: --Function --去掉前后空格,截取字符,字符长度为P_Length create or replace function get_St ...

  9. Week2——提交表单后后台的工作

    在我理解看来,发生请求后主要是通过域进行相互间的协调作用的.表单数据可以从request域中获得,也可以通过response域返回数据给前台. 当发起http请求后,已经启动的Tomcat服务器解析收 ...

  10. C#中Invoke的用法()-解决子线程访问主线程控件、线程安全等问题

    引自https://www.cnblogs.com/lsgsanxiao/p/5523282.html invoke和begininvoke 区别 一直对invoke和begininvoke的使用和概 ...