Supreme Number

A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying two smaller natural numbers.

Now lets define a number N as the supreme number if and only if each number made up of an non-empty subsequence of all the numeric digits of N must be either a prime number or 11.

For example, 17 is a supreme number because 1, 7, 17 are all prime numbers or 1, and 19 is not, because 9 is not a prime number.

Now you are given an integer  (2≤N≤10100), could you find the maximal supreme number that does not exceed N?

Input

In the first line, there is an integer T (T≤100000) indicating the numbers of test cases.

In the following TT lines, there is an integer N (2≤N≤10^100).

Output

For each test case print "Case #x: y", in which x is the order number of the test case and y is the answer.

样例输入

2
6
100

样例输出

Case #1: 5
Case #2: 73

题目来源

ACM-ICPC 2018 沈阳赛区网络预赛

题意

定义supreme number:一个数是素数,这个数的每一项都是1或素数,并且由这个数的每一位数组成的序列中,取出组成的任意子序列组成一个数,都是素数

求小于等于N的最大的supreme number

思路

打表找规律吧。。。最后会发现只有20个数符合supreme number的定义,然后把这20的数存入数组,输入整数N,在数组中查找符合要求的数就可以了

AC代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ull unsigned long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
#define lson o<<1
#define rson o<<1|1
const double E=exp(1);
const int maxn=1e6+10;
const int mod=1e9+7;
using namespace std;
int vis[30]={1,2,3,5,7,11,13,17,23,31,37,53,71,73,113,131,137,173,311,317};
char num[maxn];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
int t;
cin>>t;
int _=0;
while(t--)
{
int ans=0;
cin>>num;
int l=strlen(num);
cout<<"Case #"<<++_<<": ";
if(l>3)
cout<<317<<endl;
else
{
ans=0;
int res=10;
for(int i=0;i<l;i++)
ans=ans*res+num[i]-'0';
if(ans>=317)
cout<<317<<endl;
else
{
for(int i=0;i<21;i++)
if(vis[i]<=ans&&vis[i+1]>ans)
cout<<vis[i]<<endl;
}
}
}
return 0;
}

ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 K. Supreme Number

    A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛 K题

    题目链接: https://nanti.jisuanke.com/t/31452 AC代码(看到不好推的定理就先打表!!!!): #include<bits/stdc++.h> using ...

  4. 【ACM-ICPC 2018 沈阳赛区网络预赛 K】Supreme Number

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 显然每个数字只可能是1,3,5,7 然后如果3,5,7这些数字出现两次以上.显然两个3||5||7都能被11整除. 然后1的话最多能 ...

  5. ACM-ICPC 2018 沈阳赛区网络预赛-D:Made In Heaven(K短路+A*模板)

    Made In Heaven One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. ...

  6. 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven

    131072K   One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...

  7. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

  8. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

随机推荐

  1. gradle set

    gradle安装   1◆ gradle下载 http://services.gradle.org/distributions/       2◆ 配置环境 =====>D:\envs\grad ...

  2. jackSon注解– @JsonInclude 注解不返回null值字段

    @Data @JsonInclude(JsonInclude.Include.NON_NULL) public class OrderDTO { private String orderId; @Js ...

  3. java 实现简单循环队列

    package www.queue; import java.util.Arrays; /** * 循环队列: * 循环队列的出现是为了解决顺序队列出队列后,首指针向后移动后前面的存储过程浪费不能使用 ...

  4. 【转】Mac OS X Terminal 101:终端使用初级教程

    最近学习苹果认证的<Mac OS X Support Essentials>教程,看到 Command Line 一节有很多实用的知识,下面选取一部分翻译 + 笔记,整理成此文. 你可以整 ...

  5. vue-router-3-嵌套路由

    <div id="app"> <router-view></router-view> </div> const User = { t ...

  6. JVM运行时内存区域

    JVM运行java程序时会将内存划分为若干个不同的数据区域: (1)程序计数器: 1.占用内存空间不大. 2.程序计数器相当于JVM所执行的字节码(jvm指令)的“行号指示器”,通过程序计数器的“值” ...

  7. [Linux]Linux下rsync服务器和客户端配置

    一.rsync简介 Rsync(remote sync)是UNIX及类UNIX平台下一款神奇的数据镜像备份软件,它不像FTP或其他文件传输服务那样需要进行全备份,Rsync可以根据数据的变化进行差异( ...

  8. 十一. Python基础(11)—补充: 作用域 & 装饰器

    十一. Python基础(11)-补充: 作用域 & 装饰器 1 ● Python的作用域补遗 在C/C++等语言中, if语句等控制结构(control structure)会产生新的作用域 ...

  9. bootstrap-select 下拉多选组件

    <div class="form-group"> <label class="col-lg-2 col-sm-2 control-label" ...

  10. 阶段01Java基础day13常见对象02

    13.01_常见对象(StringBuffer类的概述) A:StringBuffer类概述 通过JDK提供的API,查看StringBuffer类的说明 线程安全的可变字符序列 B:简述安全问题 线 ...