一、CART(分类回归树)

   1.思想:

    一种采用基尼信息增益作为划分属性的二叉决策树。基尼指数越小,表示纯度越高。

 2.回归:

每个节点都有一个预测值,预测值等于属于该节点的所有样例的平均值,分支时,选择每个属性的每个阈值的最好分割点,衡量的标准是最小化均方差。

训练:对训练样本的第i(1<=i<=n)个属性,穷举每个分割点,找到均方差最小的分割点进行分割,该节点的值设为落到该节点的训练样本的平均值,直到不可分或者到一定高度或者属性使用完或者均方差不下降。

测试:对测试样本按照训练时的分割点进行下落,落到叶节点,叶节点的平均值即为预测值。

二、GBDT(梯度提升决策树)

   1.原理:

     用多棵回归树(或多个弱分类器)进行集成,其中的多棵树不是独立的,而是后面的树在前者的基础上学习误差,所有树的结果加起来是预测得到的结果。弱分类器一般采用CART。

     2.过程:

     原始回归树:

    

GBDT:

     3.依据:

     防止过拟合;

残差计算变相增大了分错样本的权重,分对的趋于0,这样后续的树就能专注于学习分错的样本;

每一步都用残差作为全局最优的梯度方向,并没有真实计算梯度;

每一次都走一小步,逐渐逼近目标,比每次都走一大步逼近目标更能防止过拟合。

4.优缺点:

优点:鲁棒性比较好,准确率比较高。

缺点:弱分类器间存在依赖关系,无法并行训练。

5.问题:

(1)训练过程:

gbdt通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练,通过降低偏差来不断提高最终分类器的精度。

(2)如何选择特征:

如CART,对每个节点的每个切分点进行遍历,选择基尼指数最小的。

(3)如何构建特征:

利用gbdt去产生特征的组合,以叶子结点为基,在基下的表示即为特征。

(4)如何用于分类:

针对样本 X 每个可能的类都训练一个分类回归树。

     6.参考:

      https://www.cnblogs.com/peizhe123/p/6105696.html

https://www.cnblogs.com/pinard/p/6140514.html

https://www.cnblogs.com/ModifyRong/p/7744987.html

三、Xgboost

   1.思想:

   Xgboost是GB算法的高效实现,xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear)

   2.区别:

   (1)xgboost在目标函数中显示的加上了正则化项,基学习为CART时,正则化项与树的叶子节点的数量T和叶子节点的值有关。

(2)GB中使用Loss Function对f(x)的一阶导数计算出伪残差用于学习生成fm(x),xgboost不仅使用到了一阶导数,还使用二阶导数。

(3)CART回归树中寻找最佳分割点的衡量标准是最小化均方差,xgboost寻找分割点的标准是最大化一个函数。

3.参考:

https://www.cnblogs.com/wxquare/p/5541414.html

【CART与GBDT】的更多相关文章

  1. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  2. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  3. GBDT学习笔记

    GBDT(Gradient Boosting Decision Tree,Friedman,1999)算法自提出以来,在各个领域广泛使用.从名字里可以看到,该算法主要涉及了三类知识,Gradient梯 ...

  4. GBDT笔记

    GBDT笔记 GBDT是Boosting算法的一种,谈起提升算法我们熟悉的是Adaboost,它和AdaBoost算法不同: 区别如下: AdaBoost算法是利用前一轮的弱学习器的误差来更新样本权重 ...

  5. CART分类与回归树与GBDT(Gradient Boost Decision Tree)

    一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策 ...

  6. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  7. 梯度提升树(GBDT)原理小结

    在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting De ...

  8. Adaboost\GBDT\GBRT\组合算法

    Adaboost\GBDT\GBRT\组合算法(龙心尘老师上课笔记) 一.Bagging (并行bootstrap)& Boosting(串行) 随机森林实际上是bagging的思路,而GBD ...

  9. [Machine Learning & Algorithm] 决策树与迭代决策树(GBDT)

    谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和G ...

随机推荐

  1. [Node.js] 04 - Event and Callback

    回调函数 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,Node 所有 API 都支持回调函数. 异步读取文件的回调函数: var fs = require("fs&quo ...

  2. 【Docker】退出容器和进入容器

    运行容器:docker run -it 镜像名 /bin/bash 退出容器: exit 或者 Ctrl+P+Q 查看容器:docker ps -a 查看运行的容器:docker ps 重启容器:do ...

  3. 【代码审计】YzmCMS_PHP_v3.6 代码执行漏洞分析

      0x00 环境准备 YzmCMS官网:http://www.yzmcms.com/ 程序源码下载:http://pan.baidu.com/s/1pKA4u99 测试网站首页: 0x01 代码分析 ...

  4. android基础---->XMl数据的解析

    在网络上传输数据时最常用的格式有两种,XML和JSON,下面首先学一下如何解析XML格式的数据,JSON的解析可以参见我的博客(android基础---->JSON数据的解析).解析XML 格式 ...

  5. Arm v8 中断处理

    转 https://blog.csdn.net/firefox_1980/article/details/40113637

  6. 大疆OSMO口袋云台相机惊艳上市!友商该如何是好。。。

    2018.11.29 晚上更新: 下午看了大疆新出的口袋云台摄像机,感觉棒极了,于是我立刻去了京东下单预订了.目前是可以免息分期6个月就可以搞定了.‘ 大家敬请期待我的评测视频吧. ======== ...

  7. HDU 5954 - Do not pour out - [积分+二分][2016ACM/ICPC亚洲区沈阳站 Problem G]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5954 Problem DescriptionYou have got a cylindrical cu ...

  8. vue中导入外面文件(css,js)方式

    有时我们需要导入外面的css文件(例如reset.css文件,bootstrap.css,jQuery.js文件),通常可通过import "name.css"的形式 对于rese ...

  9. Linux上mount 挂载windows共享文件权限问题

    在服务器部署的时候需要把文件夹设置在windows的共享文件上.在使用mount命令挂载到linux上后.文件路径和文件都是可以访问,但是不能写入,导致系统在上传文件的时候提示“权限不够,没有写权限” ...

  10. [UI] UI things

    反正我不懂. 但是很酷. https://facebook.github.io/react/ https://cn.vuejs.org/ https://angular.cn/