Codeforces 817C Really Big Numbers - 二分法 - 数论
Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number x is really big if the difference between x and the sum of its digits (in decimal representation) is not less than s. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are — in fact, he needs to calculate the quantity of really big numbers that are not greater than n.
Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.
The first (and the only) line contains two integers n and s (1 ≤ n, s ≤ 1018).
Print one integer — the quantity of really big numbers that are not greater than n.
12 1
3
25 20
0
10 9
1
In the first example numbers 10, 11 and 12 are really big.
In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30 - 3 ≥ 20).
In the third example 10 is the only really big number (10 - 1 ≥ 9).
题目大意 设
,
定义
,求满足
的X有 多少个。
随便举几个数10, 20, 30, 100,然后发现对应的函数值的分别为9, 18, 27和99猜测它满足"单调性"。
现在来证明一下,当A > B时,
。

当最高的不相同的位数为k,则A - B的最小值为$10^{k - 1}$,后面的各位数字之差最小为 -9(k - 1)(个位为第1位),显然这两个数的和大于等于0。
所以就可以二分出第一个满足要求的数,然后算一算就好了。
Code
#include <iostream>
#include <cstdio>
#include <ctime>
#include <cmath>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <stack>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean;
const signed int inf = (signed)((1u << ) - );
const signed long long llf = (signed long long)((1ull << ) - );
const double eps = 1e-;
const int binary_limit = ;
#define smin(a, b) a = min(a, b)
#define smax(a, b) a = max(a, b)
#define max3(a, b, c) max(a, max(b, c))
#define min3(a, b, c) min(a, min(b, c))
template<typename T>
inline boolean readInteger(T& u){
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-' && x != -);
if(x == -) {
ungetc(x, stdin);
return false;
}
if(x == '-'){
x = getchar();
aFlag = -;
}
for(u = x - ''; isdigit((x = getchar())); u = (u * ) + x - '');
ungetc(x, stdin);
u *= aFlag;
return true;
} #define LL long long LL n, s; inline void init() {
readInteger(n);
readInteger(s);
} boolean check(LL x) {
LL y = x, bitsum = ;
while(y) bitsum += y % , y /= ;
return x - bitsum >= s;
} inline void solve() {
LL l = , r = n;
while(l <= r) {
LL mid = (l + r) >> ;
if(check(mid)) r = mid - ;
else l = mid + ;
}
printf(Auto"\n", n - r);
} int main() {
init();
solve();
return ;
}
Codeforces 817C Really Big Numbers - 二分法 - 数论的更多相关文章
- [codeforces 55]D. Beautiful numbers
[codeforces 55]D. Beautiful numbers 试题描述 Volodya is an odd boy and his taste is strange as well. It ...
- Really Big Numbers CodeForces - 817C (数学规律+二分)
C. Really Big Numbers time limit per test 1 second memory limit per test 256 megabytes input standar ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)
Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...
- CodeForces - 1245A Good ol' Numbers Coloring (思维)
Codeforces Round #597 (Div. 2 Consider the set of all nonnegative integers: 0,1,2,-. Given two integ ...
- CodeForces 682A Alyona and Numbers (水题)
Alyona and Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/A Description After fi ...
- Codeforces 449D Jzzhu and Numbers
http://codeforces.com/problemset/problem/449/D 题意:给n个数,求and起来最后为0的集合方案数有多少 思路:考虑容斥,ans=(-1)^k*num(k) ...
- HDU1058 Humble Numbers 【数论】
Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Codeforces 396B On Sum of Fractions 数论
题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...
随机推荐
- Oracle / PLSQL函数 - DECODE
1.DECODE( expression , search , result [, search , result]... [, default] ) 参数说明: expression : 表中的某一 ...
- Web界面进行用户管理
Web界面进行用户管理 添加用户 Tags:表示账号的角色 Admin:超级管理员 No access :表示没有可以访问的virtual host虚拟机(相当于数据库) ...
- [3]传奇3服务器源码分析一 DBServer
留存 服务端下载地址: 点击这里
- python windows环境下安装
下载python安装包,双击安装后, 在cmd中输入python 若无反应, 在cmd设置环境变量 变量 : set PATH=C:\...\...\...[python的编译器的路径]:%PATH% ...
- 说说html 的<!DOCTYPE>声明&标准模式与兼容模式
我们都知道<!DOCTYPE>声明位于文档的最前面,处于<html>标签之前. <!DOCTYPE>声明不是html标签,它的作用:告知web浏览界面应该使用哪个h ...
- VM虚拟机配置固定IP
linux下vmware桥接模式.静态ip上外网的配置 http://blog.csdn.net/zdh_139/article/details/73456654 虚拟机网络改成桥接模式 vi /et ...
- tomcat 、NIO、netty 本质
tomcat 基于 Socket,面向 web 浏览器的通信容器 nio 同步非阻塞的I/O模型 netty 通信框架,对 nio 的封装
- 【JavaScript 6连载】五、继承的概念
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- table表格超出部分显示省略号
做table表格时,某一列字数比较多,希望超出宽度的部分以省略号显示 设置table的布局 默认automatic 以表格内容显示相应宽度 改成fixed 以表格列宽显示内容 table{ ta ...
- 图片转化成base64字符串
package demo; import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder; import java.io.*; public ...