volitile关键字
1.volatile关键字的两层语义
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
2)禁止进行指令重排序。
先看一段代码,假如线程1先执行,线程2后执行:
1
2
3
4
5
6
7
8
|
//线程1 boolean stop = false ; while (!stop){ doSomething(); } //线程2 stop = true ; |
这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。
下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。
那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。
但是用volatile修饰之后就变得不一样了:
第一:使用volatile关键字会强制将修改的值立即写入主存;
第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);
第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。
那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。
那么线程1读取到的就是最新的正确的值。
2.volatile保证原子性吗?
从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?
下面看一个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public class Test { public volatile int inc = 0 ; public void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for ( int i= 0 ;i< 10 ;i++){ new Thread(){ public void run() { for ( int j= 0 ;j< 1000 ;j++) test.increase(); }; }.start(); } while (Thread.activeCount()> 1 ) //保证前面的线程都执行完 Thread.yield(); System.out.println(test.inc); } } |
大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。
可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。
这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。
在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:
假如某个时刻变量inc的值为10,
线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;
然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。
然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。
那么两个线程分别进行了一次自增操作后,inc只增加了1。使用表格描述上述过程:
inc自增操作步骤 | 线程1 | 线程2 |
读取inc | 1 | 3 |
inc加1操作 | 2 | 4 |
inc写入内存 | 6 | 5 |
按照1-6步骤执行的话,两个线程对inc加1之后,inc的值还是1。
解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。
根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。但是,上面一个例子对stop变量的修改是原子性的。
把上面的代码改成以下任何一种都可以达到效果:
采用synchronized (对inc++自增操作使用synchronized修饰,保证自增操作的原子性):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public class Test { public int inc = 0 ; public synchronized void increase() { inc++; } public static void main(String[] args) { final Test test = new Test(); for ( int i= 0 ;i< 10 ;i++){ new Thread(){ public void run() { for ( int j= 0 ;j< 1000 ;j++) test.increase(); }; }.start(); } while (Thread.activeCount()> 1 ) //保证前面的线程都执行完 Thread.yield(); System.out.println(test.inc); } } |
采用Lock (对自增操作进行加锁):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
public class Test { public int inc = 0 ; Lock lock = new ReentrantLock(); public void increase() { lock.lock(); try { inc++; } finally { lock.unlock(); } } public static void main(String[] args) { final Test test = new Test(); for ( int i= 0 ;i< 10 ;i++){ new Thread(){ public void run() { for ( int j= 0 ;j< 1000 ;j++) test.increase(); }; }.start(); } while (Thread.activeCount()> 1 ) //保证前面的线程都执行完 Thread.yield(); System.out.println(test.inc); } } |
采用AtomicInteger:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public class Test { public AtomicInteger inc = new AtomicInteger(); public void increase() { inc.getAndIncrement(); } public static void main(String[] args) { final Test test = new Test(); for ( int i= 0 ;i< 10 ;i++){ new Thread(){ public void run() { for ( int j= 0 ;j< 1000 ;j++) test.increase(); }; }.start(); } while (Thread.activeCount()> 1 ) //保证前面的线程都执行完 Thread.yield(); System.out.println(test.inc); } } |
在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap),CAS实际上是利用处理器提供的CMPXCHG指令实现的,而处理器执行CMPXCHG指令是一个原子性操作。
3.volatile能保证有序性吗?
在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。
volatile关键字禁止指令重排序有两层意思:
1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;
2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。
可能上面说的比较绕,举个简单的例子:
1
2
3
4
5
6
7
8
|
//x、y为非volatile变量 //flag为volatile变量 x = 2 ; //语句1 y = 0 ; //语句2 flag = true ; //语句3 x = 4 ; //语句4 y = - 1 ; //语句5 |
由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。
并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的。
那么我们回到前面举的一个例子:
1
2
3
4
5
6
7
8
9
|
//线程1: context = loadContext(); //语句1 inited = true ; //语句2 //线程2: while (!inited ){ sleep() } doSomethingwithconfig(context); |
前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。
这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。
4.volatile的原理和实现机制
前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。
下面这段话摘自《深入理解Java虚拟机》:
“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”
lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:
1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
2)它会强制将对缓存的修改操作立即写入主存;
3)如果是写操作,它会导致其他CPU中对应的缓存行无效。
使用volatile关键字的场景
synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:
1)对变量的写操作不依赖于当前值
2)该变量没有包含在具有其他变量的不变式中
实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。
事实上,我的理解就是上面的2个条件需要保证操作是原子性操作,才能保证使用volatile关键字的程序在并发时能够正确执行。
下面列举几个Java中使用volatile的几个场景。
1.状态标记量
1
2
3
4
5
6
7
8
9
|
volatile boolean flag = false ; while (!flag){ doSomething(); } public void setFlag() { flag = true ; } |
1
2
3
4
5
6
7
8
9
10
|
volatile boolean inited = false ; //线程1: context = loadContext(); inited = true ; //线程2: while (!inited ){ sleep() } doSomethingwithconfig(context); |
2.double check
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
class Singleton{ private volatile static Singleton instance = null ; private Singleton() { } public static Singleton getInstance() { if (instance== null ) { synchronized (Singleton. class ) { if (instance== null ) instance = new Singleton(); } } return instance; } } |
至于为何需要这么写请参考:
《Java 中的双重检查(Double-Check)》http://blog.csdn.net/dl88250/article/details/5439024
和http://www.iteye.com/topic/652440
参考资料:
《Java编程思想》
《深入理解Java虚拟机》
http://jiangzhengjun.iteye.com/blog/652532
http://blog.sina.com.cn/s/blog_7bee8dd50101fu8n.html
http://blog.csdn.net/ccit0519/article/details/11241403
http://blog.csdn.net/ns_code/article/details/17101369
http://www.cnblogs.com/kevinwu/archive/2012/05/02/2479464.html
http://www.cppblog.com/elva/archive/2011/01/21/139019.html
http://ifeve.com/volatile-array-visiblity/
http://www.bdqn.cn/news/201312/12579.shtml
http://exploer.blog.51cto.com/7123589/1193399
http://www.cnblogs.com/Mainz/p/3556430.html
转自: http://www.importnew.com/18126.html
volitile关键字的更多相关文章
- 面试官最爱的volatile关键字
在Java相关的岗位面试中,很多面试官都喜欢考察面试者对Java并发的了解程度,而以volatile关键字作为一个小的切入点,往往可以一问到底,把Java内存模型(JMM),Java并发编程的一些特性 ...
- Java面试官最常问的volatile关键字
在Java相关的职位面试中,很多Java面试官都喜欢考察应聘者对Java并发的了解程度,以volatile关键字为切入点,往往会问到底,Java内存模型(JMM)和Java并发编程的一些特点都会被牵扯 ...
- Java 多线程 volitile 和 atomic
Java 多线程 volitile 和 atomic volitile关键字 public class MTester { public static class TestKey{ int x = 0 ...
- 面试必问的volatile关键字
原文: 卡巴拉的树 https://juejin.im/post/5a2b53b7f265da432a7b821c 在Java相关的岗位面试中,很多面试官都喜欢考察面试者对Java并发的了解程度, ...
- JAVA基础知识系列---进程、线程安全
1 相关概念 1.1 临界区 保证在某一时刻只有一个线程能访问数据的简便方法,在任意时刻只允许一个线程对资源进行访问.如果有多个线程试图同时访问临界区,那么在有一个线程进入后,其他所有试图访问临界区的 ...
- java 需要准备的知识(转摘)
需要准备的知识 以下为在近期面试中比较有印象的问题,也就不分公司了,因为没什么意义,大致分类记录一下,目前只想起这么多,不过一定要知道这些问题只是冰山一角,就算都会了也不能怎么样,最最重要的,还是坚实 ...
- 面试挂了阿里却拿到网易offer,一个三年Java程序员的面试总结!
前言 15年毕业到现在有三年多了,最近去面试了阿里集团(菜鸟网络,蚂蚁金服),网易,滴滴,点我达,最终收到点我达,网易offer,蚂蚁金服二面挂掉,菜鸟网络一个月了还在流程中... 最终有幸去了网易. ...
- 面试杂谈之我的实习求职之路(7个offer)
现在是5月11号,刚从北京到家,总算也可以歇歇了,最近一段时间真是忙于奔命的感觉,也确实体会到了找工作的艰辛,总而言之,求职之路,如人饮水,冷暖自知. 我想把这段时间找工作的体验和经历分享出来告诉大家 ...
- 【Java线程安全】 — 常用数据结构及原理(未完结)
本文主要记录自己对于多线程安全的学习,先来记几个线程安全模型. 首先最重要的当然是volatile和AQS了: 我们知道,整个java.cuncurrent包的核心就是volatile,CAS加自旋悲 ...
随机推荐
- 变量 构造函数 New 关键字
变量:脚本必须暂时地存储一些完成工作所需的信息,可以将这些数据存储在变量中.可将变量看作短暂记忆. 变量可以用来表示脚本代码中随时可能变化的值.通过使用存储在变量中的数据,可以计算出想要的结果. 声明 ...
- 打开MSSQL 2008 R2的时候,展开数据库都显示以下的错误提示: 值不能为空。参数名viewinfo(microsoft.sqlserver.management.sqlstudio.explorer)
打开MSSQL 2008 R2的时候,展开数据库都显示以下的错误提示: 值不能为空.参数名viewinfo(microsoft.sqlserver.management.sqlstudio.explo ...
- struts2的文件上传和文件下载
实现使用Struts2文件上传和文件下载: 注意点: (1)对应表单的file1和私有成员变量的名称必须一致 <input type="file" name="fi ...
- [转] SSO单点登录原理和流程分析
WEB的登录那些事#### 说道账户登录和注册,其实我们每天都在亲身感受着,像微博.知乎还有简书等等.我们总是需要定期的去重新登录一下,对于这种认证机制,我们都能说出来两个名词,Cookie.Sess ...
- Python hashlib、hmac加密模块
#用于加密的相关操作,3.x里代替了md5模块和sha模块,主要提供sha1,sha224,sha256,sha384,sha512,md5算法 #sha2为主流加密算法,md5加密方式不如sha2 ...
- Python 2维数组90度旋转
一.二维列表 a = [[col for col in range(4)] for row in range(4)] [[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3] ...
- Java相关英语单词
day1 Java概述 掌握 .JDK abbr. Java开发工具包(Java Developer's Kit) (abbr.缩写) .JRE abbr. Java运行环境(Java Runtime ...
- vs2017下发现解决python运行出现‘No module named "XXX""的解决办法
对于使用vs2017开发python程序无疑发现,在解决方案资源管理器中设置把两个xxx.py,yyy.py文件都设置为启动文件,然后分别在vs2017这个IDE下运行这个两个文件在项目工程中运行,发 ...
- Spring Boot 项目实战(二)集成 Logback
一.前言 上篇介绍了 Spring Boot Maven 多模块项目的搭建方法以及 MyBatis 的集成.通常在调试接口或者排查问题时我们主要借助于日志,一个设计合理的日志文件配置能大大降低我们的排 ...
- Python3练习题系列(02)
题目: 思考循环结构,看看它是怎样运行的,对我们认识程序有何益处. 知识点: list, for-loop, range 练习代码: 练习1 the_count = [1, 2, 3, 4, 5] # ...