Strassen algorithm(O(n^lg7))
Let A, B be two square matrices over a ring R. We want to calculate the matrix product C as
- {\displaystyle \mathbf {C} =\mathbf {A} \mathbf {B} \qquad \mathbf {A} ,\mathbf {B} ,\mathbf {C} \in R^{2^{n}\times 2^{n}}}
If the matrices A, B are not of type 2n × 2n we fill the missing rows and columns with zeros.
We partition A, B and C into equally sized block matrices
- {\displaystyle \mathbf {A} ={\begin{bmatrix}\mathbf {A} _{1,1}&\mathbf {A} _{1,2}\\\mathbf {A} _{2,1}&\mathbf {A} _{2,2}\end{bmatrix}}{\mbox{ , }}\mathbf {B} ={\begin{bmatrix}\mathbf {B} _{1,1}&\mathbf {B} _{1,2}\\\mathbf {B} _{2,1}&\mathbf {B} _{2,2}\end{bmatrix}}{\mbox{ , }}\mathbf {C} ={\begin{bmatrix}\mathbf {C} _{1,1}&\mathbf {C} _{1,2}\\\mathbf {C} _{2,1}&\mathbf {C} _{2,2}\end{bmatrix}}}
with
- {\displaystyle \mathbf {A} _{i,j},\mathbf {B} _{i,j},\mathbf {C} _{i,j}\in R^{2^{n-1}\times 2^{n-1}}}
then
- {\displaystyle \mathbf {C} _{1,1}=\mathbf {A} _{1,1}\mathbf {B} _{1,1}+\mathbf {A} _{1,2}\mathbf {B} _{2,1}}
- {\displaystyle \mathbf {C} _{1,2}=\mathbf {A} _{1,1}\mathbf {B} _{1,2}+\mathbf {A} _{1,2}\mathbf {B} _{2,2}}
- {\displaystyle \mathbf {C} _{2,1}=\mathbf {A} _{2,1}\mathbf {B} _{1,1}+\mathbf {A} _{2,2}\mathbf {B} _{2,1}}
- {\displaystyle \mathbf {C} _{2,2}=\mathbf {A} _{2,1}\mathbf {B} _{1,2}+\mathbf {A} _{2,2}\mathbf {B} _{2,2}}
With this construction we have not reduced the number of multiplications. We still need 8 multiplications to calculate the Ci,j matrices, the same number of multiplications we need when using standard matrix multiplication.
Now comes the important part. We define new matrices
- {\displaystyle \mathbf {M} _{1}:=(\mathbf {A} _{1,1}+\mathbf {A} _{2,2})(\mathbf {B} _{1,1}+\mathbf {B} _{2,2})}
- {\displaystyle \mathbf {M} _{2}:=(\mathbf {A} _{2,1}+\mathbf {A} _{2,2})\mathbf {B} _{1,1}}
- {\displaystyle \mathbf {M} _{3}:=\mathbf {A} _{1,1}(\mathbf {B} _{1,2}-\mathbf {B} _{2,2})}
- {\displaystyle \mathbf {M} _{4}:=\mathbf {A} _{2,2}(\mathbf {B} _{2,1}-\mathbf {B} _{1,1})}
- {\displaystyle \mathbf {M} _{5}:=(\mathbf {A} _{1,1}+\mathbf {A} _{1,2})\mathbf {B} _{2,2}}
- {\displaystyle \mathbf {M} _{6}:=(\mathbf {A} _{2,1}-\mathbf {A} _{1,1})(\mathbf {B} _{1,1}+\mathbf {B} _{1,2})}
- {\displaystyle \mathbf {M} _{7}:=(\mathbf {A} _{1,2}-\mathbf {A} _{2,2})(\mathbf {B} _{2,1}+\mathbf {B} _{2,2})}
only using 7 multiplications (one for each Mk) instead of 8. We may now express the Ci,j in terms of Mk, like this:
- {\displaystyle \mathbf {C} _{1,1}=\mathbf {M} _{1}+\mathbf {M} _{4}-\mathbf {M} _{5}+\mathbf {M} _{7}}
- {\displaystyle \mathbf {C} _{1,2}=\mathbf {M} _{3}+\mathbf {M} _{5}}
- {\displaystyle \mathbf {C} _{2,1}=\mathbf {M} _{2}+\mathbf {M} _{4}}
- {\displaystyle \mathbf {C} _{2,2}=\mathbf {M} _{1}-\mathbf {M} _{2}+\mathbf {M} _{3}+\mathbf {M} _{6}}
We iterate this division process n times (recursively) until the submatrices degenerate into numbers (elements of the ring R). The resulting product will be padded with zeroes just like A and B, and should be stripped of the corresponding rows and columns.
Practical implementations of Strassen's algorithm switch to standard methods of matrix multiplication for small enough submatrices, for which those algorithms are more efficient. The particular crossover point for which Strassen's algorithm is more efficient depends on the specific implementation and hardware. Earlier authors had estimated that Strassen's algorithm is faster for matrices with widths from 32 to 128 for optimized implementations. However, it has been observed that this crossover point has been increasing in recent years, and a 2010 study found that even a single step of Strassen's algorithm is often not beneficial on current architectures, compared to a highly optimized traditional multiplication, until matrix sizes exceed 1000 or more, and even for matrix sizes of several thousand the benefit is typically marginal at best (around 10% or less).
from Wikipedia
--------------------------------------------------------------------------------------------------------------------------------------------------------------
it substitude the 8th recursive invocation(multiplication) by the liner combination of the submatrices above(cause A4,4 and B4,4 has been used before). like a*(b+c) can have less steps than a*b+a*c,it uses liner combination to simplify the tranditional multiplicate way.Strassen algorithm(O(n^lg7))的更多相关文章
- strassen algorithm
the explaination that is clear in my view is from wiki.
- Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...
- [Algorithm] 如何正确撸<算法导论>CLRS
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话 ...
- Strassen优化矩阵乘法(复杂度O(n^lg7))
按照算法导论写的 还没有测试复杂度到底怎么样 不过这个真的很卡内存,挖个坑,以后写空间优化 还有Matthew Anderson, Siddharth Barman写了一个关于矩阵乘法的论文 < ...
- [Algorithm] 面试题之犄角旮旯 第贰章
闲下来后,需要讲最近涉及到的算法全部整理一下,有个indice,方便记忆宫殿的查找 MIT的算法课,地球上最好: Design and Analysis of Algorithms 本篇需要重新整理, ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- PE Checksum Algorithm的较简实现
这篇BLOG是我很早以前写的,因为现在搬移到CNBLOGS了,经过整理后重新发出来. 工作之前的几年一直都在搞计算机安全/病毒相关的东西(纯学习,不作恶),其中PE文件格式是必须知识.有些PE文件,比 ...
- [异常解决] windows用SSH和linux同步文件&linux开启SSH&ssh client 报 algorithm negotiation failed的解决方法之一
1.安装.配置与启动 SSH分客户端openssh-client和openssh-server 如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有 ...
- [Algorithm] 使用SimHash进行海量文本去重
在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...
随机推荐
- Oracle PL/SQL语言函数、匿名语句及循环
一.自定义函数 格式: create or replace function 函数名(参数名 参数类型...) return 返回值类型 as xx vachar2(20) ...
- Oracle EBS SLA 详解(转)
原文地址: Oracle EBS SLA 详解
- SpringBoot系列之jar包转war包
1.修改pom,将打包方式改为war包 2.dependencides中配置外部tomcat <!--因配置外部TOMCAT 而配置--> <dependency> <g ...
- ZZW原创_imdpd导入时产生的错误
1.ORA-39083: Object type OBJECT_GRANT failed to create with error Processing object type SCHEMA_EXPO ...
- Java中关键字this、super的含义及使用
Java语言中this的含义及作用: 关键字this用来指向当前实例对象(内存里正在运行的哪个实例对象),它的另一作用是用来区分对象的成员变量与方法的形参. 关键字super指的是当前对象里边的父对象 ...
- weblogic为同一domain下的不同server添加不同参数
一.背景 今天应用提需求说:现有一应用部署在多个server上,该应用会使用Ddubbo.protocol.port参数指定的端口去启动dubbo,现在想要做到的效果是为每个server的Ddubbo ...
- rdesktop安装教程
1.介绍 rdesktop是Linux下连接windows远程桌面的工具 2.下载 https://github.com/rdesktop/rdesktop/releases 3.安装 mkdir / ...
- vmware自定义网段
vmware会自动随机给分配192.168下的一个C段作为虚拟网卡(如VMnet8)的网段. 有时我们可能不想使用随机分配的网段而想使用指定网段 注意:配置成新网段后VMware会认为所有IP都没分配 ...
- 使用python将excel数据导入数据库
使用python将excel数据导入数据库 因为需要对数据处理,将excel数据导入到数据库,记录一下过程. 使用到的库:xlrd 和 pymysql (如果需要写到excel可以使用xlwt) 直接 ...
- Redis在linux环境下的安装和部署
官网:http://redis.io windows版本下载地址https://github.com/MicrosoftArchive/redis/releases 1Redis建议 ...