Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.

Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.

Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?

 
Input
The first line contains a number t(1≤t≤70), the number of the testcases.

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).

 
Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.

 
Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
 
Sample Output
1 2
1 1 1

Hint

In the first sample, $A$ is $[1,2]$. $A$ has four subsets $[],[1],[2],[1,2]$ and the sums of each subset are $0,1,2,3$. So $B=[1,1,1,1]$

 
启发博客:http://www.cnblogs.com/stepping/p/7324970.html
官方题解:

1008 Rikka with Subset

签到题,大致的思想就是反过来的背包。

如果 B​i​​ 是 B 数组中除了 B​0​​ 以外第一个值不为 0 的位置,那么显然 i 就是 A 中的最小数。

现在需要求出删掉 i 后的 B 数组,过程大概是反向的背包,即从小到大让 Bj-=B​(j−i)​​。

时间复杂度 O(nm)。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<vector>
using namespace std; int b[];//最终结果b
int bb[];//目前得出的b
int a[]; int main()
{
int T,n,m,ans;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d",&b[i]);
memset(a,,sizeof(a));
memset(bb,,sizeof(bb));
bb[]=;
for(int i=;i<=m;i++)
{
a[i]=b[i]-bb[i];
for(int j=;j<=a[i];j++)//对bb进行更新
{
for(int k=m;k>=i;k--)//反着来避免已经加到结果里的数字再加一遍
bb[k]+=bb[k-i];
}
}
int flag=;
for(int i=;i<=m;i++)
for(int j=;j<=a[i];j++)
{
if(flag++) printf(" ");
printf("%d",i);
}
printf("\n");
}
return ;
}

HDU 6092 17多校5 Rikka with Subset(dp+思维)的更多相关文章

  1. HDU 6090 17多校5 Rikka with Graph(思维简单题)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  2. HDU 6095 17多校5 Rikka with Competition(思维简单题)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  3. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  4. HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)

    Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~ ...

  5. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  6. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  7. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  8. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  9. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

随机推荐

  1. Matlab-1:jacobi迭代法工具箱

    function [u,n]=Jacobi(A,b,u0,eps,varargin) %Jacobi.m函数为用于雅可比迭代法求解线性方程组 %A为线性方程组的系数矩阵 %b为线性方程组的常数向量 % ...

  2. vue element upload图片 回显问题

      beforeUpload (file) { var _this = this; var reader = new FileReader(); reader.readAsDataURL(file); ...

  3. python 解析与生成xml

    xml.etree.ElementTree模块为xml文件的提取和建立提供了简单有效的API.下文中使用ET来代表xml.etree.ElementTree模块. XML是一种内在的分层的数据形式,展 ...

  4. 2015-09-28认识js1

             Javascript  一.特点 1. 区分大小写 2. 弱类型变量,只能用关键字“var" 3.注释 /*….*/ 二. 变量 1.变量通过关键字var声明. 2.var ...

  5. win10装机重装系统

    win10装机     1● u启制件   http://www.laomaotao.org.cn/     http://www.laomaotao.org.cn/     2● 目标盘 3● 安装 ...

  6. tp框架 php ajax 登陆

    html 文件 <form class="form-signin loginform" role="form"> <input type=&q ...

  7. Linux第九周作业

    学习笔记 不同类型的进程有不同的调度需求,其中分为两类 第一类:I/O-bound(频繁进行I/O,花费长时间等待I/O操作的完成)CPU-bound(计算密集型,需要大量的CPU时间进行运算) 第二 ...

  8. Linux第六周作业

    一 实验过程 1 先进入LinuxKernel环境下,更新menu代码到最新版,用到的命令为rm menu -rf //强制删除当前menu,git clone http://git.shiyanlo ...

  9. 面向对象之 组合 封装 多态 property 装饰器

    1.组合 什么是组合? 一个对象的属性是来自另一个类的对象,称之为组合 为什么要用组合 组合也是用来解决类与类代码冗余的问题 3.如何用组合 # obj1.xxx=obj2''''''# class ...

  10. sqlalchem表关联(一对多,一对一,多对多)

    简介: 一:一对多关系 1.表示一对多的关系时,在子表类中通过 foreign key (外键)限制本列的值,然后,在父表类中通过 relationship() 方法来引用子表的类. 2.示例代码: ...