朴素贝叶斯文本分类(python代码实现)
朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。
- 优点:在数据较少的情况下仍然有效,可以处理多分类问题。
- 缺点:对入输入数据的准备方式较为敏感。
- 使用数据类型:标称型数据。
下面从一个简单问题出发,介绍怎么使用朴素贝叶斯解决分类问题。
一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。
为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:
| 头发 | 声音 | 性别 |
|---|---|---|
| 长 | 粗 | 男 |
| 短 | 粗 | 男 |
| 短 | 粗 | 男 |
| 长 | 细 | 女 |
| 短 | 细 | 女 |
| 短 | 粗 | 女 |
| 长 | 粗 | 女 |
| 长 | 粗 | 女 |
这个问题之前用决策树做过了,这里我们换一种思路。
要是知道男生和女生头发长短的概率以及声音粗细的概率,我们就可以计算出各种情况的概率,然后比较概率大小,来判断性别。
假设抽样样本足够大,我们可以近似认为可以代表所有数据,假设上位7位同学能代表所有数据,这里方便计算~
由这7位同学,我们马上得出下面表格概率分布。
| 性别 | 头发长 | 声音粗 |
|---|---|---|
| 男 | 1/3 | 1 |
| 女 | 3/5 | 3/5 |
假设头发和声音都是独立特征,于是
男生头发长声音粗的概率=3/8*1/3*1=1/8
女生头发长声音粗的概率=5/8*3/5*3/5=9/40
因为1/8<9/40所以如果一个人,头发长,声音粗,那么这个人更可能是女生,于是出现这些特征就是女生。其他特征依次类推。
这就是朴素贝叶斯分类方法。是的,就是这么简单。
下面来解释原理,先看贝叶斯公式:
公式中,事件Bi的概率为P(Bi),事件Bi已发生条件下事件A的概率为P(A│Bi),事件A发生条件下事件Bi的概率为P(Bi│A)。
带入我们的例子中,判断头发长的人性别:
P(男|头发长)=P(头发长|男)*P(男)/P(头发长)
P(女|头发长)=P(头发长|女)*P(女)/P(头发长)
判断头发长、声音粗的人性别:
P(男|头发长声音粗)=P(头发长|男)P(声音粗|男)*P(男)/P(头发长声音粗)
P(女|头发长声音粗)=P(头发长|女)P(声音粗|女)*P(女)/P(头发长声音粗)
可以看到,比较最后比较概率,只用比较分子即可。也就是前面计算头发长声音粗的人是男生女生的概率。
下面应用于文本分类,文本分类不想上面例子有具体的特征,需先建立文本特征。以下为文本分类的一个简单例子。
# _*_ coding:utf-8 _*_
from numpy import *
import re
import random def loadDataSet(): #创建样例数据
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] #1代表脏话
return postingList, classVec def createVocabList(dataSet): #创建词库 这里就是直接把所有词去重后,当作词库
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): #文本词向量。词库中每个词当作一个特征,文本中就该词,该词特征就是1,没有就是0
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs)
p0Num = ones(numWords) #防止某个类别计算出的概率为0,导致最后相乘都为0,所以初始词都赋值1,分母赋值为2.
p1Num = ones(numWords)
p0Denom = 2
p1Denom = 2
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num / p1Denom) #这里使用了Log函数,方便计算,因为最后是比较大小,所有对结果没有影响。
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #比较概率大小进行判断,
p1 = sum(vec2Classify*p1Vec)+log(pClass1)
p0 = sum(vec2Classify*p0Vec)+log(1-pClass1)
if p1>p0:
return 1
else:
return 0 def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation'] # 测试数据
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage'] # 测试数据
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) if __name__=='__main__':
testingNB()
#输出结果
['love', 'my', 'dalmation'] classified as: 0
['stupid', 'garbage'] classified as: 1
参考:
- Machine Learning in Action
- 统计学习方法
转载:http://blog.csdn.net/csqazwsxedc/article/details/69488938
朴素贝叶斯文本分类(python代码实现)的更多相关文章
- 朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)
朴素贝叶斯算法简单.高效.接下来我们来介绍其如何应用在<红楼梦>作者的鉴别上. 第一步,当然是先得有文本数据,我在网上随便下载了一个txt(当时急着交初稿...).分类肯定是要一个回合一个 ...
- Mahout朴素贝叶斯文本分类
Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...
- 朴素贝叶斯文本分类实现 python cherry分类器
贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大 ...
- 详解使用EM算法的半监督学习方法应用于朴素贝叶斯文本分类
1.前言 对大量需要分类的文本数据进行标记是一项繁琐.耗时的任务,而真实世界中,如互联网上存在大量的未标注的数据,获取这些是容易和廉价的.在下面的内容中,我们介绍使用半监督学习和EM算法,充分结合大量 ...
- 朴素贝叶斯文本分类java实现
package com.data.ml.classify; import java.io.File; import java.util.ArrayList; import java.util.Coll ...
- 利用朴素贝叶斯算法进行分类-Java代码实现
http://www.crocro.cn/post/286.html 利用朴素贝叶斯算法进行分类-Java代码实现 鳄鱼 3个月前 (12-14) 分类:机器学习 阅读(44) 评论(0) ...
- 朴素贝叶斯算法的python实现方法
朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...
- NBC朴素贝叶斯分类器 ————机器学习实战 python代码
这里的p(y=1|x)计算基于朴素贝叶斯模型(周志华老师机器学习书上说的p(xi|y=1)=|Dc,xi|/|Dc|) 也可以基于文本分类的事件模型 见http://blog.csdn.net/app ...
- 朴素贝叶斯分类算法介绍及python代码实现案例
朴素贝叶斯分类算法 1.朴素贝叶斯分类算法原理 1.1.概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一 ...
随机推荐
- AssetBundle自动标签、打包
using System;using System.Collections.Generic;using System.IO;using UnityEditor;using UnityEngine; / ...
- Java语法基础学习DayThree
一.流程控制语句补充 1.switch语句 格式: switch(表达式) { case 值1: 语句体1; break; case 值2: 语句体2; break; ... default: 语句体 ...
- linux执行可执行文件时报xxx:not found
实际上是因为可执行文件执行时所依赖的动态链接库找不到,解决方法为在编译时加-static表示使用静态链接. 或者使用arm-linux-readelf -d +可执行文件,查看该可执行文件依赖的动态链 ...
- $_SERVER['URI']
WordPress通过301重定向实现非首先域(非www)跳转向本来是一个很简单事情,由于没弄清楚$_SERVER['HTTP_X_REWRITE_URL'] 和$_SERVER['REQUEST_U ...
- 运行和管理Rabbit
节点描述的是一个Erlang节点运行着一个Erlang应用程序.Erlang虚拟机的每个实例我们称之为节点.多个Erlang应用程序可以运行在同一个节点之上.节点之间可以进行本地通信.在RabbitM ...
- 您应该将报表从Excel转换为Power BI的8个原因
传统上,Microsoft Excel是企业的首选报告工具,但Power BI为企业提供了强大的分析和报告功能.通过快速实验可视化,广泛数据集的统计功能和计算,以及快速重组字段动态获得答案的能力,很明 ...
- 2.21 JS处理滚动条
2.21 JS处理滚动条 前言 selenium并不是万能的,有时候页面上操作无法实现的,这时候就需要借助JS来完成了.常见场景:当页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接定位到 ...
- 2.14 加载Firefox配置
2.14 加载Firefox配置(略,已在2.1.8讲过,请查阅2.1.8节课) 回到顶部 2.14-1 加载Chrome配置 一.加载Chrome配置chrome加载配置方法,只需改下面一个地方,u ...
- Ubuntu16.04换源(转)
乌班图换源(ubuntu 16.04换阿里云源为例) 换成国内最快的阿里云源 第一步:备份原来的源文件 cd /etc/apt/ 1 2 然后会显示下面的源文件sources.list 输入命令 su ...
- thinkphp+redis实现秒杀功能(转)
1,安装redis,根据自己的php版本安装对应的redis扩展(此步骤简单的描述一下) 1.1,安装 php_igbinary.dll,php_redis.dll扩展此处需要注意你的php版本如图: ...