Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南

Update : 2019.03.08

0. 环境说明

硬件:Ryzen R7 1700x + GTX 1080Ti

系统:Windows 10 Enterprise Version 1809 Update March 2019

1. 前期工作

NVIDIA 419.35 驱动

Visual Studio 2017 (需要C++部分)

Python 3.6.x x64

2. 安装CUDA和cuDNN

2.1. CUDA 10.0

下载地址:https://developer.nvidia.com/cuda-10.0-download-archive

2.2. cuDNN v7.5 for CUDA 10.0

下载地址:https://developer.nvidia.com/rdp/cudnn-download

解压后覆盖到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0目录即可。

2.3. CUDA Profiler Tools Interface (CUPTI)[可选]

下载地址:https://developer.nvidia.com/CUPTI

CUDA 工具包附带

2.4. NCLL 2.4[可选]

下载地址:https://developer.nvidia.com/nccl/nccl-download

可实现多 GPU 支持。仅支持Linux。

2.5. TensorRT 5.0[可选]

下载地址:https://developer.nvidia.com/nvidia-tensorrt-download

可缩短在某些模型上进行推断的延迟并提高吞吐量。仅支持Linux。

3. 安装DXSDK_Jun10【不确定是否必须】

DXSDK_Jun10.exe下载地址:https://www.microsoft.com/en-us/download/details.aspx?id=6812

Win10安装时会提示S1023的错误,不用管。C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Include\d3dx9.hd3dx10.hd3dx11.h 文件存在就可以。

这些都装完了就可以到C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0中打开项目。

一共155个,都编译成功即可。然后到C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\下的DebugRelease内找到deviceQuery.exe,用命令行运行,不报错说明CUDA安装成功。

4. 安装Tensorflow GPU 1.13.1

pip install --upgrade tensorflow-gpu

使用下列代码测试安装正确性

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))

5. 常用库

pip install --upgrade numpy
pip install --upgrade scipy
pip install --upgrade pandas
pip install --upgrade keras
pip install --upgrade matplotlib

6. 其他

Ryzen R7 1700x支持:SSE、SSE2、SSE4.1、SSE4.2、AVX、AVX2、FMA。

Win10下的nvidia-smiC:\Program Files\NVIDIA Corporation\NVSMI 目录内。

Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南的更多相关文章

  1. Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解

    随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...

  2. 深度学习 GPU环境 Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 环境配置

    本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 ...

  3. win10 下的 CUDA10.0 +CUDNN + tensorflow + opencv 环境部署

    1 CUDA 10.0 安装  win10 下的cuda 安装是非常简单的,和其他程序安装没什么区别,现在 tensorflow 1.13 版本以上 支持 CUDA 10.0 ,这里选取了CUDA 1 ...

  4. [ubuntu 18.04 + RTX 2070] Anaconda3 - 5.2.0 + CUDA10.0 + cuDNN 7.4.1 + bazel 0.17 + tensorRT 5 + Tensorflow(GPU)

    (RTX 2070 同样可以在 ubuntu 16.04 + cuda 9.0中使用.Ubuntu18.04可能只支持cuda10.0,在跑开源代码时可能会报一些奇怪的错误,所以建议大家配置 ubun ...

  5. win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0)

    win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0)  用vs 2015打开 编译Release ...

  6. [笔记] Ubuntu 18.04安装cuda 10及cudnn 7流程

    安装环境 OS:Ubuntu 18.04 64 bit 显卡:NVidia GTX 1080 任务:安装 CUDA 10及cuDNN 7 工具下载 NVidia官网下载下列文件: CUDA 10:cu ...

  7. Win10 在 CUDA 10.1 下跑 TensorFlow 2.x

    深度学习最热的两个框架是 pytorch 和 tensorflow,pytorch 最新版本是 1.3,tensorflow 最新版本为 2.0,在 win10 下 pytorch 1.3 要求的 c ...

  8. NVIDIA DIGITS 学习笔记(NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0)

    转自:http://blog.csdn.net/enjoyyl/article/details/47397505?from=timeline&isappinstalled=0#10006-we ...

  9. Python2.7+virtualenv+CUDA 10.0版的pytorch v1.3.0 +运行人群计数crowdcount-mcnn网络

    Python2.7$ python2 -m virtualenv pytorchenv$ source pytorchenv/bin/activate $ pip install ipython py ...

随机推荐

  1. Wireshark协议分析工具应用

    一.Wireshark简介与安装 Wireshark(前称Ethereal)是一个网络封包分析软件.网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料.Wireshark使用W ...

  2. python对redis的常用操作 下 (无序集合,有序集合)

    无序集合: 首先介绍增加,删除和获得所有元素的方法.我将会用第二部分来讨论集合的特殊操作: In [136]: x.sadd("challenge", 1,2,3,4,5,6,7, ...

  3. 使用 jstack 查询线程死锁错误日志 定位问题

    定位问题 (1) 首先 找到相应的进程 使用 ps -ef | grep 'com.sankuai.qcs.regulation.dispatch' 找到进程的ID;==>21980 (2) t ...

  4. SSM三大框架整合配置(Spring+SpringMVC+MyBatis)

    web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi=" ...

  5. python之json数据存储

    # 数据存储:json.dump()和json.load() # date:2017-07-17 import json file_name = 'D:/json_file.txt' nums = [ ...

  6. 将关系型数据库抽取成redis的思路

    思路是 先把id抽取出来形成一个·list表示数量 然后再把表变成键值对形式把id当做成键

  7. hashCode和equal

    转自:https://www.cnblogs.com/dolphin0520/p/3681042.html hashCode方法在Object类中: public native int hashCod ...

  8. webapi Filter

    webapi的controller和action的控制. 使用场景:webapi接收到加密数据以及签名.验证签名是否有效.我们不能一个个action增加判断. 所以添加Filter是比较明智的方法. ...

  9. python构建bp神经网络_曲线拟合(一个隐藏层)__1.可视化数据

    1.将数据写入csv文件,应该可以python代码直接实现数据集的写入,但我对文件读取这块不太熟练,等我成功了再加上,这里我直接手写将数据集写入Excel 2.然后把后缀改成.csv就可以了,利用pa ...

  10. 【BZOJ2425】[HAOI2010]计数(组合数学)

    [BZOJ2425][HAOI2010]计数(组合数学) 题面 BZOJ 洛谷 题解 很容易的一道题目. 统计一下每个数位出现的次数,然后从前往后依次枚举每一位,表示前面都已经卡在了范围内,从这一位开 ...