奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=-a*i + j + *j*k
v=-i - 0.4*j + *i*k
w=b*k - *i*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=0.400000
b=0.175000
i=0.100000
j=0.100000
k=0.200000
t=0.001000
y=0.000000

混沌图像:

奇怪吸引子---NewtonLeipnik的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. Android SDK安装及配置模拟器

    环境搭建 1.安装JDK 2.下载Android sdk exe格式和zip格式都可以 3.安装installer_r24.4.1-windows.exe文件,里面有两个应用程序: "SDK ...

  2. 《剑指offer》-数组乘积,不使用除法

    题目描述 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...A[i-1]A[i+1]...A[n-1].不能使用除法. ...

  3. (第5篇)避免协作冲突--简单易接入的Zookeeper

    摘要: 众所周知,分布式的系统协作服务很难有让人满意的产品.这些协作服务产品很容易陷入一些诸如竞争选择条件或者死锁的陷阱中.那Zookeeper又是怎么解决这个问题的呢? 博主福利 给大家推荐一套ha ...

  4. [HEOI2016/TJOI2016]序列

    题解: 很水的题目 首先容易发现每个位置实际上只有最大值是有用的 然后把条件变成dp[i]=max(dp[j]+1)(j<i,F[i]>G[j],G[i]>H[j]) 然后我研究了一 ...

  5. 【Java】 剑指offer(22) 链表中倒数第k个结点

    正文 本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个链表,输出该链表中倒数第k个结点.为了符合大多数人的 ...

  6. Python4 - 文件操作

    对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 文件的内存对象-包含 文件名.字符集.大小.在硬盘上的起止位置... 通过句柄对文件进行操作 关闭文件 open 方法 open()函数打开一个 ...

  7. How to cast List<Object> to List<MyClass> Object集合转换成实体集合

    List<Object> list = getList(); return (List<Customer>) list; Compiler says: cannot cast  ...

  8. 《Gradle权威指南》--Gradle构建脚本基础

    No1: 设置文件默认名是setting.gradle,放在根目录下,大多数作用都是为了配置子工程 No2: 一个Project包含很多个Task.Task就是一个操作,一个原子性的操作.其实它是Pr ...

  9. 计蒜客-跳跃游戏二 (简单dp)

    题目链接:https://nanti.jisuanke.com/t/20                                         跳跃游戏二 给定一个非负整数数组,假定你的初始 ...

  10. 目标检测——IoU 计算

    Iou 的计算 我们先考虑一维的情况:令 \(A = [x_1,x_2], B = [y_1, y_2]\),若想要 \(A\) 与 \(B\) 有交集,需要满足如下情况: 简言之,要保证 \(A\) ...