51nod1237 最大公约数之和 V3
题意:求

解:

最后一步转化是因为phi * I = Id,故Id * miu = phi
第二步是反演,中间省略了几步...
然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi前缀和即可。
#include <cstdio>
#include <map> typedef long long LL;
const int N = , T = ;
const LL MO = ; int p[N], top, phi[N];
LL Phi[N], inv2;
bool vis[N];
std::map<LL, LL> mp; inline void getp(int n) {
phi[] = ;
for(int i = ; i <= n; i++) {
if(!vis[i]) {
p[++top] = i;
phi[i] = i - ;
}
for(int j = ; j <= top && i * p[j] <= n; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - );
}
}
for(int i = ; i <= n; i++) {
Phi[i] = (Phi[i - ] + phi[i]) % MO;
}
return;
} LL getPhi(LL x) {
if(x <= ) return ;
if(x <= T) return Phi[x];
if(mp.count(x)) return mp[x];
LL ans = (x + ) % MO * (x % MO) % MO * inv2 % MO;
for(LL i = , j; i <= x; i = j + ) {
j = x / (x / i);
ans -= (j - i + ) % MO * getPhi(x / i) % MO;
ans %= MO;
}
return mp[x] = (ans + MO) % MO;
} int main() {
LL n;
getp(T);
inv2 = (MO + ) / ;
scanf("%lld", &n);
LL ans = ;
for(LL i = , j; i <= n; i = j + ) {
j = n / (n / i);
LL temp = (n / i) % MO;
ans += temp * temp % MO * (getPhi(j) - getPhi(i - ) + MO) % MO;
ans %= MO;
}
printf("%lld\n", (ans + MO) % MO);
return ;
}
AC代码
51nod1237 最大公约数之和 V3的更多相关文章
- [51nod1237] 最大公约数之和 V3(杜教筛)
题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...
- [51nod1237]最大公约数之和V3
$\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\\$ $=\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\varepsilo ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51nod 1237 最大公约数之和 V3
求∑1<=i<=n∑1<=j<=ngcd(i,j) % P P = 10^9 + 7 2 <= n <= 10^10 这道题,明显就是杜教筛 推一下公式: 利用∑d ...
- 51nod1237 最大公约数之和
题目链接 题意 其实就是求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 思路 建议先看一下此题的一个弱化版 推一下式子 \[\sum\limi ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 【题解】最大公约数之和 V3 51nod 1237 杜教筛
题目传送门 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 数学题真是做的又爽又痛苦,爽在于只要推出来公式基本上就 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
随机推荐
- CentOS安装noVNC,以Web方式交付VNC远程连接
什么是noVNC noVNC 是一个 HTML5 VNC 客户端,采用 HTML 5 WebSockets, Canvas 和 JavaScript 实现,noVNC 被普遍用在各大云计算.虚拟机控制 ...
- 基于HTML5 Canvas 实现地铁站监控
伴随国内经济的高速发展,人们对安全的要求越来越高.为了防止下列情况的发生,您需要考虑安装安防系统: 提供证据与线索:很多工厂银行发生偷盗或者事故相关机关可以根据录像信息侦破案件,这个是非常重要的一个线 ...
- BugkuCTF web基础$_POST
前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...
- OpenGL学习(1)——创建窗口
这是我的第一篇博客,试着记录学习OpenGL的过程.使用的教程:LearnOpenGL,系统:Deepin 15.9.3,IDE:Qt Creator. 添加头文件 创建窗口用到两个库:GLFW和GL ...
- MySQL高可用架构-MHA环境部署记录
一.MHA介绍 MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司) ...
- PHP从入门到精通(一)
(一)PHP简介和基本知识 PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点,利于 ...
- xcode archive 去掉dsym文件和添加dsym文件
打包慢,让人发狂!!! 所以我们尝试的去掉一些测试时候用不到的东西 比如DSYM: 这DSYM是收集奔溃的.在测试的时候不需要这些东西的所以去掉就好: 项目 Build Settings -> ...
- 第十次Scrum meeting
第十次Scrum meeting 任务及完成度: 成员 1.2 1.3 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(100%) 任务1114-2:完成对pdf.pp ...
- Github介绍
Git是一个分布式的版本控制系统,最初由LinusTorvalds编写,用作Linux内核代码的管理.在推出后,Git在其它项目中也取得了很大成功,尤其是在Ruby社区中.包括Rubinius和Mer ...
- 第一个Sprint
项目名字:四则运算APP 开发环境:java 团队名称:会飞的小鸟 团队成员:陈志棚 李炫宗 刘芮熔 徐侃 罗伟业 一.经过宿舍世纪讨论后我们剔除了一些不合理的设计,比如网站管理员这一部分在 ...