题目描述

维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。

输入

第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。

输出

包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。

样例输入

3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1

样例输出

NIE
TAK
NIE
TAK
  对于每次询问,设大于等于s的数有k个,那么如果剩下数的和sum>=(c-k)*s,剩下数中每次取最大的(c-k)个就一定能进行s次(证明在最后)。只要离散化一下之后用树状数组维护一下区间个数及区间和就好了。
证明:
首先大于等于s的k个数一定能取s次,设p=c-k,如果取了z次后取不了了,也就是剩下的数不足p个,因为剩下的数之和一定>=p*(s-z),那么剩下的数之中一定有大于s-z的,在取z次之前这个数就大于s了,与上面矛盾,因此只要sum>=p*s就一定能进行s次,反之因为和都小于s,就一定取不了s次。
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int cnt;
char s[20];
int a[1000010];
int b[1000010];
int c[1000010];
int d[1000010];
int e[1000010];
int h[1000010];
struct node
{
long long v[1000010];
void add(int x,int t)
{
for(;x<=cnt;x+=x&-x)
{
v[x]+=t;
}
}
long long query(int x)
{
long long res=0;
for(;x;x-=x&-x)
{
res+=v[x];
}
return res;
}
}b1,b2;
int find(int x)
{
int l=1,r=cnt,mid;
while(l<r)
{
mid=(l+r)>>1;
if(h[mid]<x)
{
l=mid+1;
}
else
{
r=mid;
}
}
return l;
}
int main()
{
int num;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%s",s);
scanf("%d%d",&b[i],&c[i]);
e[i]=c[i];
if(s[0]=='U')
{
d[i]=1;
}
}
sort(e+1,e+m+1);
h[++cnt]=e[1];
for(int i=2;i<=m;i++)
{
if(e[i]!=e[i-1])
{
h[++cnt]=e[i];
}
}
for(int i=1;i<=m;i++)
{
c[i]=find(c[i]);
}
for(int i=1;i<=m;i++)
{
if(d[i])
{
if(num=a[b[i]])
{
b1.add(num,-1);
b2.add(num,-h[num]);
}
a[b[i]]=c[i];
b1.add(c[i],1);
b2.add(c[i],h[c[i]]);
}
else
{
b2.query(c[i]-1)>=(b[i]-b1.query(cnt)+b1.query(c[i]-1))*h[c[i]]?printf("TAK\n"):printf("NIE\n");
}
}
}

BZOJ4378[POI2015]Logistyka——树状数组的更多相关文章

  1. 【BZOJ4378】[POI2015]Logistyka 树状数组

    [BZOJ4378][POI2015]Logistyka Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这 ...

  2. BZOJ_4378_[POI2015]Logistyka_树状数组

    BZOJ_4378_[POI2015]Logistyka_树状数组 Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作: 1.U k a 将序列中第k个数修改为a. 2.Z ...

  3. 【bzoj4378】[POI2015]Logistyka 离散化+树状数组

    题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...

  4. [POI2015]LOG(树状数组)

    今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...

  5. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...

  6. 【BZOJ4384】[POI2015]Trzy wieże 树状数组

    [BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...

  7. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  8. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  9. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

随机推荐

  1. Android ScrollView和ListView联用,且ListView可以下拉刷新和上拉加载

    ScrollView嵌套listView且ListView可以实现上拉加载. 由于代码太长,在此只提供实现思路: 先不说上拉加载的事,咱们先回想一下,ScrollView和LsitView联用,时的解 ...

  2. SkylineGlobe的PopupMessage里面嵌入的网页如何与主页面交互通讯

    1.主页面调用PopupMessage,如果需要传值,就是普通的页面间的传值就可以实现了. a.html页面调用PopupMessage创建方法,url传入b.html?x=111&y=22; ...

  3. 火狐浏览器 system error code 1722 rpc服务器不可用和谷歌浏览器的插件application/x-print-ladop不支持

    今天要实现打印的功能,但是火狐浏览器总是出现提示:火狐浏览器 system error code 1722 rpc服务器不可用 后来发现主要是系统服务中的一个windows服务没有打开导致的. 将wi ...

  4. AGC001E BBQ Hard 组合、递推

    传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...

  5. How to Enable TLS 1.2 on Windows Server 2008 R2 and IIS 7.5

    Nowadays there is an SSL vulnerability called POODLE discovered by Google team in SSLv3 protocol. So ...

  6. Luogu P2482 [SDOI2010]猪国杀

    这道题在模拟界地位不亚于Luogu P4604 [WC2017]挑战在卡常界的地位了吧. 早上到机房开始写,中间因为有模拟赛一直到1点过才正式开始码. 一边膜拜CXR dalao一边写到3点左右,然后 ...

  7. [Oacle][Partition]Partition操作与 Index, Global Index 的关系

    [Oacle][Partition]Partition操作与 Index, Global Index 的关系: ■ Regarding the local index and the global i ...

  8. Session之Config配置

    <sessionState mode="Off|InProc|StateServer|SQLServer" cookieless="true|false" ...

  9. linux下expect环境安装以及简单脚本测试

    expect是交互性很强的脚本语言,可以帮助运维人员实现批量管理成千上百台服务器操作,是一款很实用的批量部署工具!expect依赖于tcl,而linux系统里一般不自带安装tcl,所以需要手动安装 下 ...

  10. Leetcode 546. Remove Boxes

    题目链接: https://leetcode.com/problems/remove-boxes/description/ 问题描述 若干个有序排列的box和它们的颜色,每次可以移除若干个连续的颜色相 ...