题目链接

\(Description\)

数轴上有一个人,从\(0\)出发到\(E\),速度为\(1\)。数轴上还有\(n\)只熊,每只熊会在经过后的\(T\)时刻后产生一个金币。给定\(E,T\)以及\(n\)个熊的坐标\(p_i\),求收集完所有金币并到达\(E\)的最短时间。

\(n\leq10^5,\quad E,T\leq10^9\)。

\(Solution\)

令\(f_i\)表示当前\(1\sim i\)只熊的金币已经收集完,且现在在\(p_i\)处的最短时间。

每次一定是路过一段的熊,然后回去吃完金币再回到\(i\)。

那么有:$$f_i=\min{f_j+p_i-p_j+\max{T,\ 2(p_i-p_{j+1})}}$$

其实\(p_i-p_j\)这一部分是必走的(就是从\(0\)到\(E\)),不需要考虑,可以最后直接加个总时间\(E\)。

所以$$f_i=\min{f_j+\max{T,\ 2(p_i-p_{j+1})}}$$

尝试对这个\(\max\)分类讨论一下。

假如我们维护最接近原点且满足\(T>2(p_i-p_{j+1})\)的位置\(j\),那么方程就是\(f_i=\min\{f_j+T\}\)。

而对于不要的那些满足\(T\leq2(p_i-p_{j+1})\)的\(j\),\(f_i=\min\{f_j+2p_i-2p_{j+1}\}\),只要记录这些\(j\)的\(f_j-2p_{j+1}\)的最小值就可以了(是段前缀)。

复杂度\(O(n)\)。

//4ms	2304KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 1000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5; int p[N];
LL f[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int n=read(),E=read(),T=read();
for(int i=1; i<=n; ++i) p[i]=read();
LL mn=1e16;
for(int i=1,j=0; i<=n; ++i)
{
while(T<=2*(p[i]-p[j+1])) mn=std::min(mn,f[j]-2*p[j+1]), ++j;
if(j!=i) f[i]=std::min(f[j]+T,mn+2*p[i]);
else f[i]=mn+2*p[i];
}
printf("%lld\n",f[n]+E); return 0;
}

AGC 007D.Shik and Game(DP)的更多相关文章

  1. AGC 018E.Sightseeing Plan(组合 DP)

    题目链接 \(Description\) 给定三个不相交的矩形\(A(X1,Y1)-(X2,Y2),B(X3,Y3)-(X4,Y4),C(X5,Y5)-(X6,Y6)\),求 从第一个矩形中某点\(a ...

  2. AGC 001E.BBQ Hard(组合 DP)

    题目链接 \(Description\) 给定长为\(n\)的两个数组\(a,b\),求\[\sum_{i=1}^n\sum_{j=i+1}^n\binom{a_i+a_j+b_i+b_j}{a_i+ ...

  3. agc007D - Shik and Game(dp 单调性)

    题意 题目链接 Sol 主人公的最优决策一定是经过熊->返回到某个位置->收集经过的钻石 那么可以直接设\(f[i]\)表示收集完了前\(i\)个位置的钻石的最小时间,转移的时候枚举下最后 ...

  4. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

  5. AGC 018E.Sightseeing Plan——网格路径问题观止

    原题链接 鸣谢:AGC 018E.Sightseeing Plan(组合 DP) 本蒟蒻认为,本题堪称网格路径问题观止. 因为涵盖了不少网格路径问题的处理方法和思路. 一句话题意: 给你三个矩形. 三 ...

  6. AtCoder Beginner Contest 122 D - We Like AGC(DP)

    题目链接 思路自西瓜and大佬博客:https://www.cnblogs.com/henry-1202/p/10590327.html#_label3 数据范围小 可直接dp f[i][j][a][ ...

  7. AtCoder Beginner Contest 122 D - We Like AGC (DP)

    D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Yo ...

  8. AGC 005D.~K Perm Counting(容斥 DP 二分图)

    题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...

  9. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

随机推荐

  1. java 托盘 实现二级菜单

    package com.zs; import java.awt.AWTException; import java.awt.CheckboxMenuItem; import java.awt.Fram ...

  2. AI学习吧-REDIS-常识

    Redis 是一个non-sql,非关系型数据库,数据存放在内存中,支持持久化,redis中的数据会在一段时间内和(mysql等数据库)磁盘进行同步,防止丢失,这样也就降低了读数据效率. Redis和 ...

  3. Win10任务栏通知区域上已卸载程序无效图标选项如何清除?

    在Win10系统中,大部分用户都已经知道在“选择在任务栏上显示哪些图标”来让一些软年图标显示,一些隐藏,不过使用Win10系统久了之后发现,在设置通知区域图标中有很多已经卸载程序的无效选项!这让设置时 ...

  4. OpenJDK-study-002 从GitHub下载openjdk,以及Cygwin的安装

    承前启后 由于上一篇openjdk-study-001中,从Mercurial直接拉取openjdk森林失败,于是网上搜了一下,发现GitHub上有人分享openjdk的源码 https://gith ...

  5. XNginx - nginx 集群可视化管理工具

    之前团队的nginx管理,都是运维同学每次去修改配置文件,然后重启,非常不方便,一直想找一个可以方便管理nginx集群的工具,翻遍web,未寻到可用之物,于是自己设计开发了一个. 效果预览 集群gro ...

  6. jenkins(5): jenkins邮件报警配置

    参考:  https://blog.csdn.net/u013066244/article/details/78665075 1.  使用 增强版的邮件通知 1.1  安装插件 1.2.  系统配置 ...

  7. js网页下载csv格式的表格

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. UOJ#23. 【UR #1】跳蚤国王下江南 仙人掌 Tarjan 点双 圆方树 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有 ...

  9. laydate时间组件

    laydate时间组件使用笔记 /*! laydate-v5.0.9 日期与时间组件 MIT License http://www.layui.com/laydate/ By 贤心 */ ;!func ...

  10. 利用log4添加log

    應用log4net.dll 新建Global.asax,在cs文件中添加 protected void Application_Start(object sender, EventArgs e)    ...