Codeforces.566E.Restoring Map(构造)
\(Description\)
对于一棵树,定义某个点的邻居集合为所有距离它不超过\(2\)的点的集合(包括它自己)。
给定\(n\)及\(n\)个点的邻居集合,要求构造一棵\(n\)个点的树,使得每个给定的集合都对应一个点。输入保证有解。
\(n\leq1000\)。
\(Solution\)
如果两个点的邻居集合大小为\(2\),那么交集中的两个点之间一定有边。这样我们就可以\(O(\frac{n^3}{w})\)确定出非叶节点以及它们之间的连边。
然后考虑叶节点应该挂到哪里。如果一个叶节点的邻居集合,和距离某个非叶节点不超过\(1\)的点的集合相同,那么这两个点之间有边。对于叶子\(x\),所有包含\(x\)的邻居集合中最小的一定就是\(x\)的邻居集合。一个点数\(\geq3\)的树,离某个点距离不超过\(1\)的点的集合是互不相同的。
需要特判非叶节点只有一个和两个的情况。
官方题解是,找出叶子\(x\)的邻居集合,如果除去\(x\)集合大小\(\geq3\),那么在集合内度数\(>1\)的点就是与\(x\)相邻的。否则集合大小是\(2\),这种情况有些难判,但是与\(x\)相邻的点一定只与一个非叶节点相连。所以我们只需要特判\(x-a-b-...\)这种情况。
还有种并查集的写法,太傻逼了看不懂了QAQ。
//296ms 100KB
#include <cstdio>
#include <cctype>
#include <bitset>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=1003;
std::bitset<N> st[N],nle,adj[N];
bool not_leaf[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
int main()
{
int n=read();
for(int i=1; i<=n; ++i)
for(int T=read(); T--; st[i][read()]=1);
int m=0;
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
if((st[i]&st[j]).count()==2)
{
std::bitset<N> tmp=st[i]&st[j];
int s=0,t=0;
for(int k=1; k<=n&&!t; ++k) if(tmp[k]==1) s?t=k:s=k;//可以用_Find_next。但是暴力复杂度也是对的,暴力好咯。
if(!adj[s][t])
++m, printf("%d %d\n",s,t), nle[s]=nle[t]=1,
adj[s][s]=adj[s][t]=1, adj[t][t]=adj[t][s]=1, not_leaf[s]=not_leaf[t]=1;
}
if(!m)
{
for(int i=2; i<=n; ++i) printf("%d %d\n",1,i);
return 0;
}
if(m==1)
{
int s=0,t=0,a=0,b=0;
for(int i=1; i<=n&&!t; ++i) if(not_leaf[i]) s?t=i:s=i;
for(int i=1; i<=n; ++i)
if(st[i].count()!=n)
{
for(int j=1; j<=n; ++j) !not_leaf[j]&&printf("%d %d\n",j,st[i][j]?s:t);
break;
}
return 0;
}
for(int i=1; i<=n; ++i)
if(!not_leaf[i])
{
int mn=N,p=0;
for(int j=1; j<=n; ++j) if(st[j][i]&&st[j].count()<mn) mn=st[j].count(), p=j;
std::bitset<N> tmp=st[p]≰
for(int j=1; j<=n; ++j)
if(tmp[j]&&tmp==adj[j])
{printf("%d %d\n",i,j); break;}
}
return 0;
}
Codeforces.566E.Restoring Map(构造)的更多相关文章
- Codeforces 566E - Restoring Map(bitset 优化构造)
Codeforces 题目传送门 & 洛谷题目传送门 本来说好的不做,结果今早又忍不住开了道题/qiao 我们称度为 \(1\) 的点为叶节点,度大于 \(1\) 的点为非叶节点. 首先考虑如 ...
- @codefoces - 566E@ Restoring Map
目录 @description@ @solution@ @accepted code@ @details@ @description@ 对于一棵 n 个点的树,我们称两个点是相邻的当且仅当两个点的距离 ...
- codeforces 651C(map、去重)
题目链接:http://codeforces.com/contest/651/problem/C 思路:结果就是计算同一横坐标.纵坐标上有多少点,再减去可能重复的数量(用map,pair存一下就OK了 ...
- Codeforces Gym 100531I Instruction 构造
Problem I. Instruction 题目连接: http://codeforces.com/gym/100531/attachments Description Ingrid is a he ...
- [ An Ac a Day ^_^ ] CodeForces 468A 24 Game 构造
题意是让你用1到n的数构造24 看完题解感觉被样例骗了…… 很明显 n<4肯定不行 然后构造出来4 5的组成24的式子 把大于4(偶数)或者5(奇数)的数构造成i-(i-1)=1 之后就是无尽的 ...
- Codeforces 947F. Public Service 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/CF947F.html 近5K码量构造题,CF血腥残暴! 题解 这里先定义 $FT(k)$ 表示一个菊花树多 k ...
- Karen and Game CodeForces - 816C (暴力+构造)
On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as fo ...
- CodeForces 404C Restore Graph (构造)
题意:让人构造一个图,满足每个结点边的数目不超过 k,然后给出每个结点到某个结点的最短距离. 析:很容易看出来如果可能的话,树是一定满足条件的,只要从头开始构造这棵树就好,中途超了int...找了好久 ...
- Vasya And The Matrix CodeForces - 1016D (思维+构造)
Now Vasya is taking an exam in mathematics. In order to get a good mark, Vasya needs to guess the ma ...
随机推荐
- java常见错误总结
1. 现象:将数组转为List后进行removeAll()操作,报java.lang.UnsupportedOperationException错误. 代码: /** * 获取标记ID * @retu ...
- Nginx详解五:Nginx基础篇之HTTP请求
http请求 如今的http请求已经不是每一次请求都进行一次三次握手,可以在请求与相应之后,客户端和服务端不断的发送FIN和ACK包来保持连接的状态,即:长连接 HTTP请求建立在一次TCP连接基础上 ...
- 全局安装的 webpack运行时 报错 Error: Cannot find module 'webpack' ......
全局安装的webpack 安装指令如下 cnpm install wepack -save-dev -g 但是 在我的项目空间运行webpack指令的时候 会报如下错误 为了方便抓取{ Error ...
- unicode解码
var newStr = System.Text.RegularExpressions.Regex.Unescape(str);
- python is和==的区别
# ==和is # ==用来判断值是否相等# is是用看来判断是不是指定了同一个东西,判断是不是指向了同一个地址等 a = [11,22,33]b = [11,22,33] a == b # True ...
- 构造函数与 new 命令
虽然不同于传统的面向对象编程语言,但是JavaScript具有很强的面向对象编程能力.本章介绍JavaScript如何进行“面向对象编程”. 对象的概念 “面向对象编程”(Object Oriente ...
- L1与L2正则(转)
概念: L0范数表示向量中非零元素的个数:NP问题,但可以用L1近似代替. L1范数表示向量中每个元素绝对值的和: L1范数的解通常是稀疏性的,倾向于选择:1. 数目较少的一些非常大的值 2. 数目 ...
- 第四次作业之oop
第四次作业 四则运算 类 输入类:用户输入题数和答案,语言选择. 生成类:随机数字,运算符,生成表达式. 读取类:读取表达式,计算正确答案. 界面类:选择语言,输出正确题数和答案. 类与类之间是如何进 ...
- Newtonsoft.Json 高级用法
基本用法 Json.NET是支持序列化和反序列化DataTable,DataSet,Entity Framework和Entity的.下面分别举例说明序列化和反序列化. DataTable: //序列 ...
- python中super的理解(转)
原文地址:https://www.zhihu.com/question/20040039 针对你的问题,答案是可以,并没有区别.但是这题下的回答我感觉都不够好. 要谈论 super,首先我们应该无视 ...