一,传统语音识别体系结构

  

二,MFCC特征提取

  MFCC(Mel-frequency cepstral coefficients):梅尔频率倒谱系数。梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率成非线性对应关系。梅尔频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。主要用于语音数据特征提取和降低运算维度。例如:对于一帧有512维(采样点)数据,经过MFCC后可以提取出最重要的40维(一般而言)数据同时也达到了将维的目的。MFCC一般会经过这么几个步骤:预加重,分帧,加窗,快速傅里叶变换(FFT),梅尔滤波器组,离散余弦变换(DCT)。

  其中最重要的就是FFT和梅尔滤波器组,这两个进行了主要的降维操作。

 

提取MFCC特征的过程:

1.先对语音进行预加重、分帧和加窗;

2.对每一个短时分析窗,通过FFT得到对应的频谱;

3.将上面的频谱通过Mel滤波器组得到Mel频谱;

4.在Mel频谱上面进行倒谱分析(取对数,做逆变换,实际逆变换一般是通过DCT离散余弦变换来实现,取DCT后的第2个到第13个系数作为MFCC系数),获得Mel频率倒谱系数MFCC,这个MFCC就是这帧语音的特征。

接下来,语音就可以通过一系列的倒谱向量来描述了,每个向量就是每帧的MFCC特征向量。

语音笔记:MFCC的更多相关文章

  1. 语音笔记:CTC

    CTC全称,Connectionist temporal classification,可以理解为基于神经网络的时序类分类.语音识别中声学模型的训练属于监督学习,需要知道每一帧对应的label才能进行 ...

  2. 基于MFCC的语音数据特征提取概述

    1. 概述 语音是人类之间沟通交流的最直接也是最快捷方便的一种手段,而实现人类与计算机之间畅通无阻的语音交流,一直是人类追求的一个梦想. 伴随着移动智能设备的普及,各家移动设备的厂家也开始在自家的设备 ...

  3. 梅尔倒谱系数特征(Mel-frequency cepstral coefficients,MFCC)

    引言 感知实验表明,人耳对于声音信号的感知聚焦于某一特定频率区域内,而非在整个频谱包络中. MFCC特征是应用非常广泛的语音特征. 语音的MFCC特征是基于人耳感知实验得到,将人耳当成特定的滤波器,只 ...

  4. 测试使用wiz来发布blog

    晚上尝试了下用wiz写随笔并发布,貌似成功了,虽然操作体验和方便性上不如word,但起码它集成了这个简单的功能可以让我用:如果能让我自动新建blog文章并自动定时更新发布就完美了.2013年7月5日1 ...

  5. 阿里巴巴语音识别模型 DFSMN 的使用指南

    阿里巴巴 2018 年开源的语音识别模型 DFSMN,将全球语音识别准确率纪录提高至 96.04%.DFSMN 模型,是阿里巴巴的高效工业级实现,相对于传统的 LSTM.BLSTM 等声学模型,该模型 ...

  6. M2阶段事后总结报告

    会议照片: 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 开发一个快捷方便的记事本App.从用户体验角度出发,在一般记事本App的基础上进行创新 ...

  7. 孤荷凌寒自学python第八十六天对selenium模块进行较详细的了解

    孤荷凌寒自学python第八十六天对selenium模块进行较详细的了解 (今天由于文中所阐述的原因没有进行屏幕录屏,见谅) 为了能够使用selenium模块进行真正的操作,今天主要大范围搜索资料进行 ...

  8. 孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1

    孤荷凌寒自学python第八十五天配置selenium并进行模拟浏览器操作1 (完整学习过程屏幕记录视频地址在文末) 要模拟进行浏览器操作,只用requests是不行的,因此今天了解到有专门的解决方案 ...

  9. 孤荷凌寒自学python第八十四天搭建jTessBoxEditor来训练tesseract模块

    孤荷凌寒自学python第八十四天搭建jTessBoxEditor来训练tesseract模块 (完整学习过程屏幕记录视频地址在文末) 由于本身tesseract模块针对普通的验证码图片的识别率并不高 ...

随机推荐

  1. 如何在Windows上挂载Linux系统分区

    NFS普遍用于unix之间共享,windows默认是不支持这种文件系统的.如果我们要用windows访问NFS的话,而windows系统自身又不支持这种文件系统,那么我们该怎么办? 别急,小编这就手把 ...

  2. BookStrap之模板继承

    模板继承 (extend) Django模版引擎中最强大也是最复杂的部分就是模版继承了.模版继承可以让您创建一个基本的“骨架”模版,它包含您站点中的全部元素,并且可以定义能够被子模版覆盖的 block ...

  3. UVA804-Petri Net Simulation(模拟)

    Problem UVA804-Petri Net Simulation Accept:251  Submit:1975 Time Limit: 3000 mSec Problem Descriptio ...

  4. EXCEL 偶数、奇数行分开求和公式

    例举 : A1行是 123 A2行是 321 A3行是 456 A4行是 789我是加的是A1+A3得出的和还有加的是A2+A4得出的和因为要A1+A3一直加到A601,我用很笨的方式像这样子一个个加 ...

  5. 离线安装Cloudera Manager 5和CDH5(最新版5.9.3) 完全教程(七)界面安装

    一.安装过程 1.1 登录 1.2 接受许可协议 1.3 选择免费版本 1.4 选择下一步 1.5 选择当前管理的主机 1.6 选择使用Parcel安装,选择CDH版本,点击继续 1.7 等待安装 此 ...

  6. WebService基础入门 CXF(WS + RS)

    一.基本介绍 Web Services是一个软件接口,它描述了一组可以在网络上通过标准化的 XML 消息传递访问的操作.它使用基于 XML 语言的协议来描述要执行的操作或者要与另一个 Web 服务交换 ...

  7. OpenCV (C++) 颜色跟随

    #include<opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; ...

  8. PAT A1148 Werewolf - Simple Version (20 分)——暴力遍历,负负得正

    Werewolf(狼人杀) is a game in which the players are partitioned into two parties: the werewolves and th ...

  9. Subversion 1.8.9 ( SVN Client ) 安装最新版本的svn客户端

    For CentOS7 Users: [WandiscoSVN] name=Wandisco SVN Repo baseurl=http://opensource.wandisco.com/cento ...

  10. 搭建mysql cluster

    虚拟机搭建Mysql Cluster 参考文档:http://www.cnblogs.com/jackluo/archive/2013/01/19/2868152.html http://www.cn ...