P2345 奶牛集会

题目背景

MooFest, 2004 Open

题目描述

约翰的N 头奶牛每年都会参加“哞哞大会”。哞哞大会是奶牛界的盛事。集会上的活动很

多,比如堆干草,跨栅栏,摸牛仔的屁股等等。它们参加活动时会聚在一起,第i 头奶牛的坐标为Xi,没有两头奶牛的坐标是相同的。奶牛们的叫声很大,第i 头和第j 头奶牛交流,会发出max{Vi; Vj}×|Xi − Xj | 的音量,其中Vi 和Vj 分别是第i 头和第j 头奶牛的听力。假设每对奶牛之间同时都在说话,请计算所有奶牛产生的音量之和是多少。

输入输出格式

输入格式:

• 第一行:单个整数N,1 ≤ N ≤ 20000

• 第二行到第N + 1 行:第i + 1 行有两个整数Vi 和Xi,1 ≤ Vi ≤ 20000; 1 ≤ Xi ≤ 20000

输出格式:

• 单个整数:表示所有奶牛产生的音量之和


对于这个题,要求的即为 \(\sum_{i=1}^n V_i*\sum_{V_j<V_i} |x_i-x_j|\)

对于音量\(V\),我们可以排序来做以消除影响。

但对于带绝对值的距离,就不太好处理了。

我们考虑去掉绝对值。

\(\sum_{i=1}^n V_i*(\sum_{V_j<V_i,x_i>x_j} (x_i-x_j)*\sum_{V_j<V_i,x_i<x_j} (x_j-x_i))\)

\(\Rightarrow \sum_{i=1}^n( V_i*(\sum_{ V_j<V_i,x_i<x_j }x_j )-V_i*(\sum_{ V_j<V_i,x_i>x_j }x_j )+x_i*(k_1-k_2) )\)(其中,\(k_1\)存储位置在\(x_i\)左边的点的个数,\(k_2\)右边)

我们使用两个树状数组\(c1\)和\(c2\)分别维护\(1\)$n$的坐标之和,和$1$\(n\)的点的个数。其中\(1\)~\(n\)表示按位置离散化的值。

我们将\(v\)从小到大排序并将这个点加入树状数组即可。


code:

#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const ll N=20010;
ll c1[N],c2[N];//奶牛个数,奶牛距离和
ll n;
struct node
{
ll x,v,i;
bool friend operator <(node n1,node n2)
{
return n1.x<n2.x;
}
}cow[N],d[N];
bool cmp(node n1,node n2)
{
return n1.v<n2.v;
} void change(ll i,ll delta)
{
while(i<=n)
{
c1[i]++;
c2[i]+=delta;
i+=i&-i;
}
} ll x_query(ll i)
{
ll x=0;
while(i)
{
x+=c2[i];
i-=i&-i;
}
return x;
} ll c_query(ll i)
{
ll c=0;
while(i)
{
c+=c1[i];
i-=i&-i;
}
return c;
}
ll ans=0;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&cow[i].v,&cow[i].x);
sort(cow+1,cow+1+n);
for(int i=1;i<=n;i++)
cow[i].i=i;
for(int i=1;i<=n;i++)
{
d[cow[i].i].i=i;
d[cow[i].i].v=cow[i].v;
d[cow[i].i].x=cow[i].x;
}
sort(d+1,d+1+n,cmp);
for(int i=1;i<=n;i++)
{
ans+=d[i].v*(x_query(n)-2*x_query(d[i].i)+(2*c_query(d[i].i)-c_query(n))*d[i].x);
change(d[i].i,d[i].x);
}
printf("%lld\n",ans);
return 0;
}

2018.6.2

洛谷 P2345 奶牛集会 解题报告的更多相关文章

  1. 洛谷P2345 奶牛集会

    题目背景 MooFest, 2004 Open 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时会聚 ...

  2. 洛谷 P2345 奶牛集会

    https://www.luogu.org/problem/show?pid=2345 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅 ...

  3. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  6. 洛谷 P1108 低价购买 解题报告

    P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...

  7. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  8. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  9. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

随机推荐

  1. LINQ 如何动态创建 Where 子查询

    还是那句话,十年河东,十年河西,莫欺少年穷! 学无止境,精益求精... 今天探讨下如何构造动态的LINQ子查询 LINQ,相信大家都写过,很简单,下面以一个基本的范例说明下: namespace Co ...

  2. [Oracle]跨DBLINK的JOIN查询的数据库缓存问题15783452141

    客户问到跨DBLINK,结合本地表和远端表的时候,数据在哪一边 的 Data Buffer 缓存. 测试的结果是:本地表在本地缓存,远端表在远端缓存. ####Testcase-0929-10 本地数 ...

  3. cp 命令有坑

    cp 是个很常用的命令, 基本语法为  cp -v  a   b  把文件a 复制为文件b(-v为显示做了什么,这是非常安全的做法,建议新手添加此参数) 参数说明: -a:此选项通常在复制目录时使用, ...

  4. Wechat login authorization(OAuth2.0)

    一.前言 昨天小组开了个会,让我今天实现一个微信网页授权的功能,可以让用户在授权之后无需再次登录既可进入用户授权界面.在这之前我也从没接触过微信公众号开发之类的,也不知道公众号后台是啥样子的,自己所在 ...

  5. Crackme006 - 全新160个CrackMe学习系列(图文|视频|注册机源码)

    知乎:逆向驿站 原文链接 CrackMe006 | 难度适中适合练手 |160个CrackMe深度解析(图文+视频+注册机源码) crackme006,依然是delphi的,而且没壳子,条线比较清晰, ...

  6. Notepad++列编辑

    NotePad++列编辑 工具:Notepad++使用说明:在我们的日常工作中,经常会碰到要修改多行记录,一行行去处理会非常浪费人力,这时候列编辑就是一个很好的解决方法,列编辑在进行数据批量操作时是一 ...

  7. Oracle数据库设置为归档模式的操作方法

    Oracle归档模式非常非常重要!对于有些数据库刚装好后可能是非归档模式,这是很危险的!为了安全起见,一定要谨记:对于Oracle数据库,一定要设置为归档模式,尤其是生产库,只有这样才能实现数据库的有 ...

  8. Linux下FTP环境部署梳理(vsftpd和proftpd)

    在日常运维工作中,常部署到的FTP是vsftpd和proftd.之前写了Linux下FTP虚拟账号环境部署总结,下面简单说下本地用户下的FTP环境部署过程: 简单梳理下FTP主动和被动两种工作模式: ...

  9. og标签对SEO的作用及用法

    meta property=og标签对SEO的作用及用法,如果你仔细观察会发现本站点<head>代码中有一段:"property="og:image"这段代码 ...

  10. 【个人阅读】软件工程M1/M2阶段总结

    这次作业是好久以前布置的,由于学期末课程设计任务比较重,我在完善M2阶段的代码的同时又忙于数据库的实现和编译器的实现,一度感觉忙得透不过气来....到这些都基本完成的时候,会看自己以前的阅读心得,觉得 ...