【ARC063E】Integers on a tree
Description
给定一棵\(n\)个点的树,其中若干个点的权值已经给出。现在请为剩余点填入一个值,使得相邻两个点的差的绝对值恰好为1。请判断能否实现,如果能,请将方案一并输出。
Solution
卡了一会,终于想出来了。
首先从深度奇偶性和权值奇偶性这一方面考虑:如果所有已知点的权值与深度的奇偶性关系不全一样,则一定无解。
然后考虑怎么构造。如果用已填点将树分成若干块,显然每一块是独立的,现在考虑单独一块。
直接想有一点困难,所以我们先尝试考虑每一个空点\(u\)能填什么数:考虑这一个块中的一个有值点,其权值为\(x\),如果它到\(u\)距离为\(2k\),那么\(u\)的填数选择就有\(x-2k,x-2k+2,...,x,...,x+2k-1,x+2k\);如果它到\(u\)距离为\(2k+1\),那么\(u\)的填数选择就有\(x-2k-1,x-2k+1,x-2k+3...,x+2k-1,x+2k+1\)。
考虑所有的有值点,那么\(u\)的取值范围就是这些选择的交\(S\)。也就是说,只要\(u\)填\(S\)中的权值,单看\(u\)而言就一定能填出满足所有有值点的方案。若\(S\)为空则全局无解。
可是对于每个空点,我们到底选\(S\)中的哪个权值填入呢?注意到如果随便填的话,可能会出现跳跃的问题。
我画了几个例子。构造例子的方法是先弄一棵填好权值的合法树,再指定有值位置。当我用上述方法考虑空点的\(S\)时,我们发现:当且仅当将每一个点都取其\(S\)中的最小值时有解(或都取最大值),原问题才有解,这种填法即一种合法方案;否则无解。
粗略证明:考虑一个点\(u\)的取值集合\(S\),它其实是一个范围\([l,r]\),但中间的取值是每隔1取一个的。对于任意一个与\(u\)相邻的点\(v\),记其权值范围为\([l',r']\),则其权值边界的跨度都不会超过1,即有\(l'=l\pm1\)和\(r'=r \pm1\),注意两者不是互不相关的。为什么?\(S\)记录的是每一个有值点\(x\)到这个点对应的权值范围的交。走多一步,意味着空隙翻转(原来是跳一次取一次的),对于走近了的\(x\),其权值范围以\(x\)为中心向内空隙翻转,对于走远了的\(x\),其权值范围向外空隙翻转;也就是一个多了两端,一个少了两端。仔细分析下来,\(S\)的边界变化也不会超过1.
如果有解,那么这样填数一定能够满足条件------我们是贴着边界走的,而有值点本身也在边界上。如果这样填都不能满足,显然全局无解。
因此我们对每个点取\(S\)的最小值,判断是否合法即可。
至于\(S\)最小值的计算方法,这里有一个技巧:对于每个点\(u\),我们直接维护所有有值点\(x\)对应的范围的左端点的最大值,即\(x-dis\)的最大值。这样一来,如果真正意义上\(S\)交集不为空,那么这个值就是\(u\)的取值。否则,这个值无论如何都会使得后面的判定出错不合法,毕竟取值不满足所有的有值点。
Code
#include <cstdio>
#include <cstring>
using namespace std;
const int N=100005;
const int INF=1e9;
int n,m;
int a[N];
int h[N],tot,dep[N];
struct Edge{
int v,next;
}e[N*2];
int f[N],g[N],ans[N];
inline int max(int x,int y){
return x>y?x:y;
}
inline int abs(int x){
return x>=0?x:-x;
}
void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
scanf("%d",&n);
int u,v;
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v);
}
memset(a,-1,sizeof a);
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&v);
a[u]=v;
}
}
void mark_dfs(int u,int fa){
dep[u]=dep[fa]+1;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa)
mark_dfs(v,u);
}
bool firstCheck(){
mark_dfs(1,0);
int flag=-1;
for(int u=1;u<=n;u++)
if(a[u]!=-1){
if(flag==-1)
flag=(a[u]^dep[u])&1;
else if(((a[u]^dep[u])&1)!=flag)
return false;
}
return true;
}
void dp_dfs1(int u,int fa){
f[u]=(a[u]!=-1)?a[u]:-INF;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
dp_dfs1(v,u);
f[u]=max(f[u],f[v]-1);
}
}
bool dp_dfs2(int u,int fa){
if(a[u]!=-1)
g[u]=a[u];
ans[u]=(a[u]!=-1)?a[u]:max(f[u],g[u]);
if(fa&&abs(ans[u]-ans[fa])!=1)
return false;
static int ch[N],cnt;
static int l[N],r[N];
cnt=0;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa)
ch[++cnt]=v;
l[0]=g[u]+1; r[cnt+1]=-INF;
for(int i=1;i<=cnt;i++)
l[i]=max(l[i-1],f[ch[i]]);
for(int i=cnt;i>=1;i--)
r[i]=max(r[i+1],f[ch[i]]);
for(int i=1;i<=cnt;i++)
g[ch[i]]=max(l[i-1],r[i+1])-2;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
if(dp_dfs2(v,u)==false)
return false;
if(abs(ans[u]-ans[v])!=1)
return false;
}
return true;
}
bool solve(){
dp_dfs1(1,0);
g[1]=-INF;
if(dp_dfs2(1,0)==false)
return false;
puts("Yes");
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
return true;
}
int main(){
readData();
if(!firstCheck()||!solve()){
puts("No");
return 0;
}
return 0;
}
【ARC063E】Integers on a tree的更多相关文章
- 【BZOJ2959】长跑(Link-Cut Tree,并查集)
[BZOJ2959]长跑(Link-Cut Tree,并查集) 题面 BZOJ 题解 如果保证不出现环的话 妥妥的\(LCT\)傻逼题 现在可能会出现环 环有什么影响? 那就可以沿着环把所有点全部走一 ...
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
- 【BZOJ2816】【ZJOI2012】网络(Link-Cut Tree)
[BZOJ2816][ZJOI2012]网络(Link-Cut Tree) 题面 题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相 ...
- 【CF434E】Furukawa Nagisa's Tree 点分治
[CF434E]Furukawa Nagisa's Tree 题意:一棵n个点的树,点有点权.定义$G(a,b)$表示:我们将树上从a走到b经过的点都拿出来,设这些点的点权分别为$z_0,z_1... ...
- 【CF725G】Messages on a Tree 树链剖分+线段树
[CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...
- 【SPOJ】QTREE7(Link-Cut Tree)
[SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...
- 【SPOJ】Count On A Tree II(树上莫队)
[SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...
- 【BZOJ2870】最长道路tree 点分治+树状数组
[BZOJ2870]最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来 ...
- 【数据挖掘】分类之decision tree(转载)
[数据挖掘]分类之decision tree. 1. ID3 算法 ID3 算法是一种典型的决策树(decision tree)算法,C4.5, CART都是在其基础上发展而来.决策树的叶子节点表示类 ...
随机推荐
- Nowcoder 牛客练习赛23
Preface 终于知道YKH他们为什么那么喜欢打牛客网了原来可以抽衣服 那天晚上有空就也去玩了下,刷了一波水TM的YKH就抽到了,我当然是没有了 题目偏水,好像都是1A的.才打了一个半小时,回家就直 ...
- Spark在Windows下的环境搭建(转)
原作者:xuweimdm 原文网址:http://blog.csdn.net/u011513853/article/details/52865076 由于Spark是用Scala来写的,所以Spa ...
- JVM规范系列:总结
我们花了几天的时间来阅读<Java虚拟机规范>,了解要实现一个虚拟机应该包括什么内容.通过这么一次阅读,我们大致了解了虚拟机规范的内容. 第1章.对Java虚拟机进行了一些简单的介绍. 第 ...
- WordPress更新时提示无法连接到FTP服务器的解决方案
这几天在搭建主站的时候,更新wordpress时无法连接到FTP原因服务器 解决方法如下: 在WordPress目录下找到wp-config.php文件并编辑,在最后一行加上: define('FS_ ...
- grep精确匹配搜索某个单词的用法 (附: grep高效用法小结))
grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正 ...
- Linux磁盘空间被占用问题 (分区目录占用空间比实际空间要大: 资源文件删除后, 空间没有真正释放)
问题说明:IDC里的一台服务器的/分区使用率爆满了!已达到100%!经查看发现有个文件过大(80G),于是在跟有关同事确认后rm -f果断删除该文件.但是发现删除该文件后,/分区的磁盘空间压根没有释放 ...
- 置换群 Burnside引理 Pólya定理(Polya)
置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...
- Scrum Meeting NO.6
Scrum Meeting No.6 1.会议内容 今晚是提交编译测试程序的截至日期,大家果断都在忙着写编译,所以今天的进度不大. 2.任务清单 徐越 序号 近期的任务 进行中 已完成 1 代码重构: ...
- hover设定触发时间间隔
500毫秒执行一次 $(".banner_menu_content li a").hover(function(){ var aa=$(this).text().trim(); s ...
- 第三个sprint冲刺第一阶段