我诈尸啦!

高三退役选手好不容易抛弃天利和金考卷打场CF,结果打得和shi一样……还因为queue太长而unrated了!一个学期不敲代码实在是忘干净了……

没分该没分,考题还是要订正的 =v= 欢迎阅读本题解!

P.S. 这几个算法我是一个也想不起来了 TAT

题目链接

Codeforces 1106F Lunar New Year and a Recursive Sequence 新年和递推数列

题意描述

某数列\(\{f_i\}\)递推公式:$$f_i = (\prod_{j=1}kf_{i-j}{b_j}) \bmod p$$

其中\(b\)是已知的长度为\(k\)的数列,\(p = 998244353\),\(f_1 = f_2 = ... = f_{k-1} = 1\),\(f_k\)未知。

给出两个数\(n, m\),构造一个\(f_k\)使得\(f_n = m\),无解输出-1。

\(k \le 100, n \le 10^9\)

题解

数论!真令人头秃!

首先这个数据范围让人想到什么?矩阵乘法!

矩阵乘法想推这个全是乘法和乘方的递推数列咋办?取对数!离散对数!

于是这道题关键的两个考点就被你发现啦!

(然而我太菜了,并不能发现 = =)

什么是离散对数?

众所周知(众==学过NTT的人等),这个喜闻乐见的模数\(p = 998244353\)有个原根\(g=3\),\(g^i(0\le i < P - 1)\)和\(1\le x < P\)一一对应。那么类比我们学过的对数,称这个\(i\)为\(x\)的离散对数。

令数列\(h_i\)为\(f_i\)的离散对数。

那么有递推式:$$h_i = (\sum_{j=1}^kb_j\cdot h_{i-j}) \bmod (p - 1)$$

其中\(h_1 = h_2 = ... = h_{k-1} = 0\)。注意模数变成了\(p - 1\)(费马小定理)。

这个就可以用矩阵加速了!如果我们把\(h_k\)设为1带进去,求得\(h_n = c\),那么有\(h_n = c \cdot h_k \bmod (p - 1)\);

\(h_n\)即为\(m\)的离散对数,用BSGS可求;

exgcd解刚才这个同余方程即可得到\(h_k\);

\(f_k = g^{h_k}\),快速幂即可得到\(f_k\)。

如果exgcd发现没有解的话就输出-1。

是不是思路非常清晰啊~

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cassert>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 102, P = 998244353, P2 = 998244352, G = 3;
int K;
ll b[N], n, m, C; namespace BSGS {
const int S = 32000, M = 2000000;
int cnt = 0, adj[M + 5], nxt[S + 5];
ll key[S + 5], val[S + 5];
void insert(ll K, ll V){
int p = K % M;
key[++cnt] = K;
val[cnt] = V;
nxt[cnt] = adj[p];
adj[p] = cnt;
}
ll search(ll K){
for(int u = adj[K % M]; u; u = nxt[u])
if(key[u] == K) return val[u];
return -1;
}
void init(){
ll sum = 1;
for(int i = 1; i <= S; i++)
sum = sum * G % P;
ll tot = 1;
for(int i = 1; (i - 1) * S < P - 1; i++)
tot = tot * sum % P, insert(tot, i * S);
}
ll log(ll x){
ll sum = 1, ret;
for(int i = 1; i <= S; i++){
sum = sum * G % P;
ret = search(sum * x % P);
if(~ret && ret < P - 1) return ret - i;
}
assert(0);
return -1;
}
} struct matrix {
ll g[N][N];
matrix(){
memset(g, 0, sizeof(g));
}
matrix(int x){
memset(g, 0, sizeof(g));
for(int i = 1; i <= K; i++)
g[i][i] = 1;
}
matrix operator * (const matrix &b){
matrix c;
for(int i = 1; i <= K; i++)
for(int j = 1; j <= K; j++)
for(int k = 1; k <= K; k++)
c.g[i][j] = (c.g[i][j] + g[i][k] * b.g[k][j]) % P2;
return c;
}
}; ll qpow(ll a, ll x){
ll ret = 1;
while(x){
if(x & 1) ret = ret * a % P;
a = a * a % P;
x >>= 1;
}
return ret;
}
matrix qpow(matrix a, ll x){
matrix ret(1);
while(x){
if(x & 1) ret = ret * a;
a = a * a;
x >>= 1;
}
return ret;
}
ll calcC(){
matrix ret, op;
ret.g[K][1] = 1;
for(int i = 1; i < K; i++)
op.g[i][i + 1] = 1;
for(int i = 1; i <= K; i++)
op.g[K][i] = b[K - i + 1];
ret = qpow(op, n - K) * ret;
return ret.g[K][1];
}
void exgcd(ll a, ll b, ll &g, ll &x, ll &y){
if(!b) return (void)(x = 1, y = 0, g = a);
exgcd(b, a % b, g, y, x);
y -= x * (a / b);
}
ll solve(ll A, ll B){ //Ax % P2 == B, solve x
ll a = A, b = P2, g, x, y;
exgcd(a, b, g, x, y);
if(B % g) return -1;
x *= B / g, y *= B / g;
ll t = b / g;
x = (x % t + t) % t;
return x;
} int main(){ BSGS::init();
read(K);
for(int i = 1; i <= K; i++) read(b[i]);
read(n), read(m);
C = calcC();
m = BSGS::log(m);
ll ans = solve(C, m);
if(ans == -1) puts("-1");
else write(qpow(G, ans)), enter; return 0;
}

Codeforces 1106F Lunar New Year and a Recursive Sequence | BSGS/exgcd/矩阵乘法的更多相关文章

  1. Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

    哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...

  2. @codeforces - 1106F@ Lunar New Year and a Recursive Sequence

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 定义递推数列 f: (1)f[1] = f[2] = ... f ...

  3. CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS

    传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...

  4. CF1106F Lunar New Year and a Recursive Sequence

    题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdot ...

  5. HDU - 5950 Recursive sequence(二项式+矩阵合并+矩阵快速幂)

    Recursive sequence Farmer John likes to play mathematics games with his N cows. Recently, they are a ...

  6. Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...

  7. CF1106F Lunar New Year and a Recursive Sequence 线性递推 + k次剩余

    已知\(f_i = \prod \limits_{j = 1}^k f_{i - j}^{b_j}\;mod\;998244353\),并且\(f_1, f_2, ..., f_{k - 1} = 1 ...

  8. CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)

    题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\ ...

  9. CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs

    题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ ...

随机推荐

  1. 微软下一代Web前端技术Blazor(C#编译为WebAssembly)

    W3C Web标准化机构在制定下一代的网页技术WebAssembly.目前版本是1.0,主流浏览器的最新版本都已经支持.其特点是浏览器可以执行编译后的二进制程序,不需要像之前的程序,浏览器下载Java ...

  2. [Oracle][Corruption]发生ORA00600[kdsgrp1]的时候,如何进行调查

    本质上,这很可能是坏块引发的,所以需要调查 关联的Table 中的坏块状况: Excerpt of trace file============================*** 2017-08- ...

  3. Scala学习(七)---包和引入

    包和引入 摘要: 在本篇中,你将会了解到Scala中的包和引入语句是如何工作的.相比Java不论是包还是引入都更加符合常规,也更灵活一些.本篇的要点包括: 1. 包也可以像内部类那样嵌套 2. 包路径 ...

  4. DELL升级bios方式

    升级过程其实很简单 1.官网下载exe文件,放入U盘 2.重启电脑F12选择升级bios 3.选择U盘里面的升级文件 4.重点来了!!! boot options 是什么? 就是boot设置里面自己自 ...

  5. springboot 发送邮件+模板+附件

    package com.example.demo; import org.junit.Test;import org.junit.runner.RunWith;import org.springfra ...

  6. 基于uFUN开发板的心率计(三)Qt上位机的实现

    前言 上两周利用周末的时间,分别写了基于uFUN开发板的心率计(一)DMA方式获取传感器数据和基于uFUN开发板的心率计(二)动态阈值算法获取心率值,介绍了AD采集传感器数据和数据的滤波处理获取心率值 ...

  7. java基础(个人学习笔记) A

    1.       声明long类型的变量 需要在数值的末尾+l/L.(不加L的话,貌似默认就是int型了.当给long赋值一个超过int范围的值的时候,会出问题.) 2.  package java_ ...

  8. ASP.NET Core使用TopShelf部署Windows服务

    asp.net core很大的方便了跨平台的开发者,linux的开发者可以使用apache和nginx来做反向代理,windows上可以用IIS进行反向代理. 反向代理可以提供很多特性,固然很好.但是 ...

  9. Linux-C-Program:makefile

    注:本文参照博客:https://blog.csdn.net/initphp/article/details/7692923 1. 概述2. 示例说明2.1 无makefile编译2.2 有makef ...

  10. Jmeter(三十)_TimeShift函数在JSR223中的使用

    今天学习一下TimeShift函数在JSR223中的使用方法. 关联之前的一篇时间戳文章:Jmeter(十二)_打印时间戳 首先,创建线程组,在线程组下面创建一个JSR223采样器 选择Groovy语 ...