【BZOJ2299】[HAOI2011]向量(数论)
【BZOJ2299】[HAOI2011]向量(数论)
题面
题解
首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来。\((a,b)(a,-b)(b,a)(b,-a)\),我们假设这四个出现的次数分别为\(c1,c2,c3,c4\)。
那么我们就有方程。
\]
因为合法的情况一定保证了所有数都是整数,因此\(c1+c2\)和\(c1-c2\)要同奇偶,\(c3,c4\)同理。
首先先判断是否有整数解,那么拿\(d=gcd(a,b)\)直接检查\(d|x,d|y\)就行了。
有了整数解我们很容易写出通解,因为只需要考虑奇偶性,所以根本不需要求出一组合法解,只需要求出一种合法的奇偶性。剩下的只需要\(check\)一下最终能否做到配对的奇偶性即可。
那么讨论\(a,b\)的奇偶性和\(x,y\)的奇偶性。(都是除掉\(gcd\)之后的值)
当\(a,b\)都为奇数的时候,显然只有\(x,y\)同奇偶的时候才有解,否则无法做到对应系数奇偶性相等。
当\(a,b\)一奇一偶的时候,发现偶数对应的系数可以随意调整,因此一定有解。
当\(a,b\)都是偶数的时候,听说你把\(gcd\)除掉之后还能两个数都是偶数??
那就做完了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int main()
{
int T=read();
while(T--)
{
int a=read(),b=read(),x=read(),y=read();
int d=__gcd(a,b);
if(x%d||y%d){puts("N");continue;}
a/=d;b/=d;x/=d;y/=d;
bool fl=false;
if((a&1)&&(b&1)&&((x&1)==(y&1)))fl=true;
if(((a&1)&&!(b&1))||(!(a&1)&&(b&1)))fl=true;
puts(fl?"Y":"N");
}
return 0;
}
【BZOJ2299】[HAOI2011]向量(数论)的更多相关文章
- BZOJ2299 HAOI2011向量(数论)
设最后的组成为x=x0a+x1b,y=y0a+y1b.那么容易发现x0和y0奇偶性相同.x1和y1奇偶性相同.于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a ...
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- BZOJ2299: [HAOI2011]向量
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1255 Solved: 575 Description 给你一 ...
- P2520 [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- luogu P2520 [HAOI2011]向量
传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...
- 【[HAOI2011]向量】
靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...
随机推荐
- mui 下拉刷新和上拉加载
<body> mui文档提供了两种不同模式的下拉刷新,具体情况看文档,链接:http://dev.dcloud.net.cn/mui/pulldown/ 单 webview 模式和 双 w ...
- 案例学python——案例三:豆瓣电影信息入库
闲扯皮 昨晚给高中的妹妹微信讲题,函数题,小姑娘都十二点了还迷迷糊糊.今天凌晨三点多,被连续的警报声给惊醒了,以为上海拉了防空警报,难不成地震,空袭?难道是楼下那个车主车子被堵了,长按喇叭?开窗看看, ...
- 将 C# 枚举序列化为 JSON 字符串 基础理论
该转换过程需要引用 Newtonsoft.JSON,这其中的转换过程还是蛮有意思的. 一.定义枚举 /// <summary> /// 托寄物品枚举 /// </summary> ...
- [T-ARA][떠나지마][不要离开]
歌词来源:http://music.163.com/#/song?id=22704408 잊기엔 너무 사랑했나봐 [id-ggi-en neo-mu sa-lang-haen-na-bwa] 아직도 ...
- Linux内核第四节 20135332武西垚
实验目的: 使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用 实验过程: 查看系统调用列表 get pid 函数 #include <stdio.h> #include & ...
- Linux内核第二节
作者:武西垚 深入理解函数调用堆栈 堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间 堆栈的作用 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 esp,堆栈指针,指 ...
- HTTP基础与Android之(安卓与服务器通信)——使用HttpClient和HttpURLConnection
查看原文:http://blog.csdn.net/sinat_29912455/article/details/51122286 1客户端连接服务器实现内部的原理 GET方式和POST方式的差别 H ...
- JAVA链表中迭代器的实现
注:本文代码出自<java数据结构和算法>一书. PS:本文中类的名字定义存在问题,Link9应改为Link.LinkList9应该为LinkList.由于在同包下存在该名称,所以在后面接 ...
- 组件vue传值
<div id="app"> <hs :message="name"></hs> 用来接收值 </div> &l ...
- 【转帖】互联网加密及OpenSSL介绍和简单使用
转帖:https://mritd.me/2016/07/02/%E4%BA%92%E8%81%94%E7%BD%91%E5%8A%A0%E5%AF%86%E5%8F%8AOpenSSL%E4%BB%8 ...