Fibonacci Tree

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=4786

Description

 Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

Input

  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).

Output

  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.

Sample Input

2

4 4

1 2 1

2 3 1

3 4 1

1 4 0

5 6

1 2 1

1 3 1

1 4 1

1 5 1

3 5 1

4 2 1

Sample Output

Case #1: Yes

Case #2: No

Hint

题意

给你一个由白边和黑边组成的图,问你能不能找到一个生成树,使得白边的个数是Fibonacci数

题解:

考虑白边最多情况的生成树时候白边数量为Max,最少的时候为Min

那么[Min,Max]这个区间内的白边数量都可以取到

所以求出Min和Max即可

坑点:图不联通

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
struct node{
int x,y,z;
}p[maxn];
bool cmp1(node A,node B){
return A.z<B.z;
}
bool cmp2(node A,node B){
return A.z>B.z;
}
int fa[maxn];
int fi(int x){
return x==fa[x]?x:fa[x]=fi(fa[x]);
}
void uni(int x,int y){
x=fi(x),y=fi(y);
if(x==y)return;
else fa[x]=fa[y];
}
void solve(int Cas){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++)
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
sort(p+1,p+1+m,cmp1);
int x1=0,x2=0;
int D = 0;
for(int i=1;i<=m;i++){
if(fi(p[i].x)!=fi(p[i].y)){
x1+=p[i].z;
uni(p[i].x,p[i].y);
D = D + 1;
}
}
if(D!=n-1){
printf("Case #%d: No\n",Cas);
return;
}
for(int i=1;i<=n;i++)
fa[i]=i;
sort(p+1,p+1+m,cmp2);
for(int i=1;i<=m;i++){
if(fi(p[i].x)!=fi(p[i].y)){
x2+=p[i].z;
uni(p[i].x,p[i].y);
}
}
long long a=1,b=1;
int flag = 0;
while(a<=x2||b<=x2){
if(a>=x1&&a<=x2)
flag=1;
if(b>=x1&&b<=x2)
flag=1;
a=a+b;
if(a>b)swap(a,b);
}
if(a>=x1&&a<=x2)
flag=1;
if(b>=x1&&b<=x2)
flag=1;
if(flag)printf("Case #%d: Yes\n",Cas);
else printf("Case #%d: No\n",Cas);
}
int main(){
int t;
scanf("%d",&t);
for(int cas=1;cas<=t;cas++)solve(cas);
}

HDU 4786 Fibonacci Tree 最小生成树的更多相关文章

  1. hdu 4786 Fibonacci Tree (2013ACMICPC 成都站 F)

    http://acm.hdu.edu.cn/showproblem.php?pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) ...

  2. HDU 4786 Fibonacci Tree(生成树,YY乱搞)

    http://acm.hdu.edu.cn/showproblem.php? pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others ...

  3. hdu 4786 Fibonacci Tree(最小生成树)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. HDU 4786 Fibonacci Tree

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

  6. 【HDU 4786 Fibonacci Tree】最小生成树

    一个由n个顶点m条边(可能有重边)构成的无向图(可能不连通),每条边的权值不是0就是1. 给出n.m和每条边的权值,问是否存在生成树,其边权值和为fibonacci数集合{1,2,3,5,8...}中 ...

  7. HDU 4786 Fibonacci Tree (2013成都1006题) 最小生成树+斐波那契

    题意:问生成树里能不能有符合菲波那切数的白边数量 思路:白边 黑边各优先排序求最小生成树,并统计白边在两种情况下数目,最后判断这个区间就可以.注意最初不连通就不行. #include <stdi ...

  8. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  9. HDU 4786 Fibonacci Tree 生成树

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:有N个节点(1 <= N <= 10^5),M条边(0 <= M <= ...

随机推荐

  1. Lambda表达式树解析(下)

    概述 前面章节,总结了Lambda树的构建,那么怎么解析Lambda表达式树那?Lambda表达式是一种委托构造而成,如果能够清晰的解析Lambda表达式树,那么就能够理解Lambda表达式要传递的正 ...

  2. Android抓包方法(转)

    Android抓包方法(转) 作者:Findyou 地址:http://www.cnblogs.com/findyou/p/3491014.html 前言: 做前端测试,基本要求会抓包,会分析请求数据 ...

  3. JMeter监控Slave机器是否执行

    netstat -anp | grep 192.168.1.161 | grep 19091 | wc -l http://www.linuxidc.com/Linux/2014-09/106497. ...

  4. net core体系-3再次认识net core

    1 什么是ASP.NET Core ASP.NET Core 是一个全新的开源.跨平台框架,可以用它来构建基于网络连接的现代云应用程序,比如:Web 应用,IoT(Internet Of Things ...

  5. ansible基础命令实例

    参考:https://www.cnblogs.com/ilurker/p/6421624.html 1. 使用自定义的hosts 格式: ansible  组机匹配  -i  自定义的hosts  - ...

  6. phpMyAdmin 安装教程全攻略

    管理MYSQL数据库的最好工具是PHPmyAdmin,现在最新版本是phpMyAdmin 2.9.0.2,这是一个国际上开源的软件,一直在更新版本,你可以从 http://www.phpmyadmin ...

  7. 062 SparkStream内部原理

    1.DStream 内部是一系列的RDD组成的,每个RDD与RDD的产生时间形成一个pair保存在内存中(下面有) RDD包含了对应时间段的所有block数据. 2.DStream下的方法 /** T ...

  8. Python中type和object

    type  所有类是type生成的 a = 1 b = "abc" print("type a:{}".format(type(a))) print(" ...

  9. 页面滚动到指定class样式位置

    var winTop =$(window).scrollTop(); var top = document.getElementsByClassName('is-danger')[0].getBoun ...

  10. Kafka命令行操作及常用API

    一.Kafka命令行操作 1.查看当前集群已存在的主题 bin/kafka-topic.sh --zookeeper hd09-01:2181 --list 2.创建主题 bin/kafka-topi ...