Pairs Forming LCM
题目:
B - Pairs Forming LCM
Time Limit:2000MS Memory Limit:32768KB
Description
Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If
you analyze the code, you will find that the code actually counts the
number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
Sample Input
15
2
3
4
6
8
10
12
15
18
20
21
24
25
27
29
Sample Output
Case 1: 2
Case 2: 2
Case 3: 3
Case 4: 5
Case 5: 4
Case 6: 5
Case 7: 8
Case 8: 5
Case 9: 8
Case 10: 8
Case 11: 5
Case 12: 11
Case 13: 3
Case 14: 4
Case 15: 2给定一个数字,n,求1~n之间可以找到的最小公倍数为n的对数
解题思路:
素因子分解:n=p1^x1*p2^x2**************pn^xn;
a=p1^y1*p2^y2*p3^y3*****************pn^yn;
b=p1^c1*p2^c2*p3^c3*****************pn^cn;
gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)
lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)
所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek
当ai == ei时,bi可取 [0, ei] 中的所有数 有 ei+1 种情况,bi==ei时同理。
那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
除了 (n, n) 所有的情况都出现了两次 那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define INF 0x3f3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
const int mx=;
ll pos[];
ll top=,n,t,k;
bool vis[mx];
void get_prime()
{
for(int i=;i<mx;i++)
{
if(vis[i]) continue;
pos[top++]=i;
for(int j=;j*i<mx;j++)
{
vis[i*j]=;
}
}
}
ll solve(ll n)
{
ll ans=;
for(int i=;i<top && pos[i]*pos[i]<=n;i++)
{
if(n%pos[i]==)
{
int cnt=;
while(n%pos[i]==)
{
n/=pos[i];
cnt++;
}
ans*=(*cnt+);
}
}
if(n>) ans*=(*+);
return (ans+)/;
}
int main()
{
get_prime();
scanf("%lld",&t);
k=t;
while(t--)
{
scanf("%lld",&n);
printf("Case %lld: %lld\n",k-t,solve(n));
}
}
Pairs Forming LCM的更多相关文章
- Pairs Forming LCM(素因子分解)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B 全题在文末. 题意:在a,b中(a,b<=n) ...
- LightOJ 1236 - Pairs Forming LCM(素因子分解)
B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- 1236 - Pairs Forming LCM
1236 - Pairs Forming LCM Find the result of the following code: long long pairsFormLCM( int n ) { ...
- Pairs Forming LCM LightOJ - 1236 素因子分解
Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; fo ...
- LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)
链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...
- LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )
题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i, j)满足 LCM(i, j) = n, ...
随机推荐
- NYOJ 541 最强的战斗力
最强DE 战斗力 时间限制:1000 ms | 内存限制:65535 KB 难度: 描写叙述 春秋战国时期,赵国地大物博,资源很丰富.人民安居乐业.但很多国家对它虎视眈眈.准备联合起来对赵国发起一 ...
- ZOJ Problem Set - 3229 Shoot the Bullet 【有上下界网络流+流量输出】
题目:problemId=3442" target="_blank">ZOJ Problem Set - 3229 Shoot the Bullet 分类:有源有汇 ...
- rac_grid自检提示缺少pdksh-5.2包
原创作品,出自 "深蓝的blog" 博客,欢迎转载,转载时请务必注明下面出处,否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlo ...
- 火狐浏览器设置bypass
http://blog.sina.com.cn/s/blog_6f7d179e0101a60l.html 某个网段不使用代理的设置FF和IE不同,IE是用*通配符,FF是用CIDR的表示法, FF的简 ...
- .Net 路由处理厉害了
通过设置路由,可以灵活的显示地址内容.它会自动转换为想要的控制器和方法中去. using System; using System.Collections.Generic; using System. ...
- HTTP 各种特性应用(二)
一.Cookie 通过 Set-Cookie 设置. 下次浏览器请求就会带上. 键值对,可以设置多个. Cookie 属性 max-age 和 expires 设置过期时间 Secure 只在 htt ...
- WebApi 参数请求
收藏来源于:http://www.cnblogs.com/babycool/p/3922738.html 路由配置到id post多个参数 ➕前缀 FromBody 参数为实体 对于一般前台页面发起的 ...
- 前端中url、href、src的详细含义
一.URL的概念 统一资源定位符(或称统一资源定位器/定位地址.URL地址等,英语:Uniform Resource Locator,常缩写为URL),有时也被俗称为网页地址(网址).如同在网络上的门 ...
- Mysql source导入.sql文件深坑!
刚刚接手一个项目,给老系统加功能.把数据库考出来一个.sql文件就170多M. 使用mysql命令行source 我的.sql文件. 导了一宿都没导完,然后发现里面的数据怎么是乱码呢.. 崩溃额,在排 ...
- while my time-- , will the meaning++?
// while my time--,will the meaning++? // However,what's the meaning of life ? while(tomorrow>0){ ...