POJ2689 Prime Distance 质数筛选
题目大意
求区间[L, R]中距离最大和最小的两对相邻质数。R<2^31, R-L<1e6。
总体思路
本题数据很大。求sqrt(R)的所有质数,用这些质数乘以j, j+1, j+2...k(j和k使得积属于[L,R])筛选出[L,R]中的合数,然后在[L,R]的质数中得到所求。
筛法求质数
为在O(n)的时间复杂度中求得质数,我们要使筛选时每个可能为质数的数只访问一次。我们用v[i]表示i的最小质因数。每次循环到i时,假设v[i]和小于i的质数都已经在前面求出来了,若v[i]==0,则i是个质数。然后对于每个不大于v[i]的已知质数p,令v[i*p]=p。
不漏
证明:若i+1是个合数,则在处理i+1以前v[i+1]便已知。i+1必然可以化为若干个质数的积,记此质数的集合为P其中最小的质数为a,剩余质数的积为x。显然a<=x<=i。i之前循环到x时,a必然存在于已经求出的质数集合当中(因为a<=x),且a不大于v[x](因为a是P中最小的)。所以一定能由a*x得到i+1。
不重
证明:如果不要求p<=v[i],则值p*i会重复计算若v[i]<=p<=i,则在i循环之前必会循环到p,那个时候就把v[i]*p给算了。
注意
- 本题中质数是从2开始的。
- [L,R]质数中找所求时,避免1的出现,不能直接改循环初始条件。
- 筛选合数时,j至少为2,否则素数乘以1还是素数,我们却把它设成合数了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdarg>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f, MAX_RANGE = 1000010, MAX_SQRT_N = 1 << 16;
#define LOOP(i, n) for(int i=0; i<n; i++)
#define LoopFrom(i, l, r) for(int i=l; i<r; i++)
#define LoopDown(i, n) for(int i=n-1; i>=0; i--) int GetPrime(int *ans, int n)
{
static int v[MAX_SQRT_N];
memset(v, 0, sizeof(v));
int ansCnt = 0;
LoopFrom(i, 2, n + 1)
{
if (!v[i])
{
ans[ansCnt++] = i;
v[i] = i;
}
for (int j = 0; j < ansCnt && ans[j] <= v[i] && ans[j] <= n/i; j++)
v[ans[j] * i] = ans[j];
}
return ansCnt;
} void Proceed(int l, int r)
{
static int a[MAX_SQRT_N];
static bool IsPrime[MAX_RANGE];
memset(a, 0, sizeof(a));
memset(IsPrime, false, sizeof(IsPrime));
LOOP(i, r - l + 1)
IsPrime[i] = true;
int len = GetPrime(a, sqrt((double)r)+0.5);
LOOP(i, len)
LoopFrom(j, max((l / a[i])*a[i] < l ? l / a[i] + 1 : l / a[i], 2), r / a[i] + 1)
IsPrime[a[i] * j - l] = false;
int minDist = INF, maxDist = 0, prev = -1;
int c1=0, c2=INF, d1=0, d2=-INF;
LoopFrom(i, 0, r - l + 1)
{
if (IsPrime[i] && i+l>1)
{
if (prev == -1)
{
prev = i;
continue;
}
if (i - prev < c2 - c1)
{
c1 = prev;
c2 = i;
}
if (i - prev > d2 - d1)
{
d1 = prev;
d2 = i;
}
prev = i;
}
}
if (c2 == INF)
printf("There are no adjacent primes.\n");
else
printf("%d,%d are closest, %d,%d are most distant.\n", c1+l, c2+l, d1+l, d2+l);
} int main()
{
int l, r;
while (~scanf("%d%d", &l, &r))
Proceed(l, r);
return 0;
}
筛法求质数2
void GetPrime(int *prime, int n)
{
static bool NotPrime[MAX_N];
memset(NotPrime,false,sizeof(NotPrime));
int primeCnt=0;
for(int i=2; i<=n; j++)
{
if(!NotPrime[i])
prime[primeCnt++]=i;
for(int j=0; j<primeCnt; j++)
{
if(i*prime[j]>N)
break;
NotPrime[i*prime[j]]=true;
if(i%prime[j]==0)
break;
}
}
}
不重
原则:对于一个数n都由它的最小质因数p和某一个数i相乘得到。
n的最小质因数只有1个,所以n只被访问了一次。
不漏
证明:对于n=p*i,p是n的最小质因数,当外层循环到当前i时,p一定会在循环j时被访问到。
因为n的质因数集合包含i的质因数集合,所以p小于等于i的最小质因数,而循环到当前i时,所有小于i的质数都求出来了,包含着i的最小质因数,故命题成立。
POJ2689 Prime Distance 质数筛选的更多相关文章
- POJ2689 - Prime Distance(素数筛选)
题目大意 给定两个数L和U,要求你求出在区间[L, U] 内所有素数中,相邻两个素数差值最小的两个素数C1和C2以及相邻两个素数差值最大的两个素数D1和D2,并且L-U<1,000,000 题解 ...
- POJ2689 Prime Distance(数论:素数筛选模板)
题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...
- ZOJ 1842 Prime Distance(素数筛选法2次使用)
Prime Distance Time Limit: 2 Seconds Memory Limit: 65536 KB The branch of mathematics called nu ...
- 解题报告:poj2689 Prime Distance
2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...
- POJ-2689 Prime Distance (两重筛素数,区间平移)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13961 Accepted: 3725 D ...
- POJ-2689 Prime Distance,区间素数筛法
Prime Distance 只会埃氏筛法的弱鸡今天读了读挑战程序设计120页,明白了求小区间内素数的方 ...
- poj 2689 Prime Distance(区间筛选素数)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9944 Accepted: 2677 De ...
- poj2689 Prime Distance题解报告
题目戳这里 [题目大意] 给定一个区间[L,R],求区间内的质数相邻两个距离最大和最小的. [思路分析] 其实很简单呀,很明显可以看出来是数论题,有关于质数的知识. 要注意一下的就是L和R的数据范围都 ...
- POJ2689:Prime Distance(大数区间素数筛)
The branch of mathematics called number theory is about properties of numbers. One of the areas that ...
随机推荐
- Go中的main函数和init函数
Go里面有两个保留的函数:init函数(能够应用于所有的package)和main函数(只能应用于package main).这两个函数在定义时不能有任何的参数和返回值.虽然一个package里面可以 ...
- GitHub上fork别人打代码后如何保持和原作者同步的更新
1.进入你的GitHub发起Pull request 2.选择compare across forks 3.反向操作.base fork改为自己的,head fork改为原作者的 4.点击 cre ...
- C# 查找、结束进程 - 通过进程名精确、模糊查找、结束进程
/// <summary> /// 根据“精确进程名”结束进程 /// </summary> /// <param name="strProcName" ...
- SmartUpload实现文件上传
(一)SmartUpload组件简介 SmartUpload组件 专门用于实现文件上传及下载的免费组件 (二)SmartUpload组件特点 使用简单:编写少量代码,完成上传下载功能 能够控制上传 ...
- java程序员级别划分
IT路虽好,却难走.1级 为会基本语法 大学里的JAVA教程 能及格 2级 自己可以写个 俄罗斯方块,扫雷,贪吃蛇, 拼图之类的小游戏 3级 能够进手机游戏CP,SP公司,做手机游戏 或者 ...
- mssql for VSCode Guide
前言 mssql 出自微软自己的 Visual Studio Code 开源插件,代码托管于 GitHub 上. 不过需要注意的一点是,使用 insert into 语句新增的数据...中文是会乱码的 ...
- window 8 电脑操作服务集合(网址)
如何开启Win8远程桌面 http://jingyan.baidu.com/album/48206aeae06627216ad6b3bf.html?picindex=2 Win8.1用户账户的配置管理 ...
- git与pycharm结合使用
一.配置pycharm 在pycharm中选择file-->setting,在弹出的窗口中选择version control,选择git,配置git的路径 将当前项目关闭 在弹出的窗口中选择ch ...
- Coreldraw软件反盗版提示x8有优惠活动 cdr x8提示盗版怎么办?
CorelDRAW X8装不上,我的悲伤有这么大,或者比这还大一点...♥♥♥如果你遇到这样的断了网,卸了装,装了卸,然后再安装的...╮(-_-)╭这样的保存和另存为都点不了,不敢关电脑的亦或是这样 ...
- 数据库连接池c3p0
XML配置文件: <?xml version="1.0" encoding="UTF-8"?> <c3p0-config> <!- ...