【机器学习实战】第12章 使用 FP-growth 算法来高效发现频繁项集
第12章 使用FP-growth算法来高效发现频繁项集

前言
在 第11章 时我们已经介绍了用 Apriori 算法发现 频繁项集 与 关联规则。
本章将继续关注发现 频繁项集 这一任务,并使用 FP-growth 算法更有效的挖掘 频繁项集。
FP-growth 算法简介
- 一种非常好的发现频繁项集算法。
- 基于Apriori算法构建,但是数据结构不同,使用叫做
FP树的数据结构结构来存储集合。下面我们会介绍这种数据结构。
FP-growth 算法步骤
- 基于数据构建FP树
- 从FP树种挖掘频繁项集
FP树 介绍
- FP树的节点结构如下:
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue # 节点名称
self.count = numOccur # 节点出现次数
self.nodeLink = None # 不同项集的相同项通过nodeLink连接在一起
# needs to be updated
self.parent = parentNode # 指向父节点
self.children = {} # 存储叶子节点
FP-growth 原理
基于数据构建FP树
步骤1:
- 遍历所有的数据集合,计算所有项的支持度。
- 丢弃非频繁的项。
- 基于 支持度 降序排序所有的项。

- 所有数据集合按照得到的顺序重新整理。
- 重新整理完成后,丢弃每个集合末尾非频繁的项。

步骤2: 6. 读取每个集合插入FP树中,同时用一个头部链表数据结构维护不同集合的相同项。
最终得到下面这样一棵FP树 
从FP树中挖掘出频繁项集
步骤3:
对头部链表进行降序排序
对头部链表节点从小到大遍历,得到条件模式基,同时获得一个频繁项集。
如上图,从头部链表 t 节点开始遍历,t 节点加入到频繁项集。找到以 t 节点为结尾的路径如下:
去掉FP树中的t节点,得到条件模式基<左边路径,左边是值>[z,x,y,s,t]:2,[z,x,y,r,t]:1 。条件模式基的值取决于末尾节点 t ,因为 t 的出现次数最小,一个频繁项集的支持度由支持度最小的项决定。所以 t 节点的条件模式基的值可以理解为对于以 t 节点为末尾的前缀路径出现次数。条件模式基继续构造条件 FP树, 得到频繁项集,和之前的频繁项组合起来,这是一个递归遍历头部链表生成FP树的过程,递归截止条件是生成的FP树的头部链表为空。 根据步骤 2 得到的条件模式基 [z,x,y,s,t]:2,[z,x,y,r,t]:1 作为数据集继续构造出一棵FP树,计算支持度,去除非频繁项,集合按照支持度降序排序,重复上面构造FP树的步骤。最后得到下面 t-条件FP树 :
然后根据 t-条件FP树 的头部链表进行遍历,从 y 开始。得到频繁项集 ty 。然后又得到 y 的条件模式基,构造出 ty的条件FP树,即 ty-条件FP树。继续遍历ty-条件FP树的头部链表,得到频繁项集 tyx,然后又得到频繁项集 tyxz. 然后得到构造tyxz-条件FP树的头部链表是空的,终止遍历。我们得到的频繁项集有 t->ty->tyz->tyzx,这只是一小部分。
- 条件模式基:头部链表中的某一点的前缀路径组合就是条件模式基,条件模式基的值取决于末尾节点的值。
- 条件FP树:以条件模式基为数据集构造的FP树叫做条件FP树。
FP-growth 算法优缺点:
* 优点: 1. 因为 FP-growth 算法只需要对数据集遍历两次,所以速度更快。
2. FP树将集合按照支持度降序排序,不同路径如果有相同前缀路径共用存储空间,使得数据得到了压缩。
3. 不需要生成候选集。
4. 比Apriori更快。
* 缺点: 1. FP-Tree第二次遍历会存储很多中间过程的值,会占用很多内存。
2. 构建FP-Tree是比较昂贵的。
* 适用数据类型:标称型数据(离散型数据)。
FP-growth 代码讲解
完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/12.FrequentPattemTree/fpGrowth.py
main 方法大致步骤:
if __name__ == "__main__":
simpDat = loadSimpDat() #加载数据集。
initSet = createInitSet(simpDat) #对数据集进行整理,相同集合进行合并。
myFPtree, myHeaderTab = createTree(initSet, 3)#创建FP树。
freqItemList = []
mineTree(myFPtree, myHeaderTab, 3, set([]), freqItemList) #递归的从FP树中挖掘出频繁项集。
print freqItemList
大家看懂原理,再仔细跟踪一下代码。基本就没有问题了。
- 作者:mikechengwei
- GitHub地址: https://github.com/apachecn/MachineLearning
- 版权声明:欢迎转载学习 => 请标注信息来源于 ApacheCN
【机器学习实战】第12章 使用 FP-growth 算法来高效发现频繁项集的更多相关文章
- 【机器学习实战】第12章 使用FP-growth算法来高效发现频繁项集
第12章 使用FP-growth算法来高效发现频繁项集 前言 在 第11章 时我们已经介绍了用 Apriori 算法发现 频繁项集 与 关联规则.本章将继续关注发现 频繁项集 这一任务,并使用 FP- ...
- 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...
- 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...
- FP - growth 发现频繁项集
FP - growth是一种比Apriori更高效的发现频繁项集的方法.FP是frequent pattern的简称,即常在一块儿出现的元素项的集合的模型.通过将数据集存储在一个特定的FP树上,然后发 ...
- FP-growth算法发现频繁项集(一)——构建FP树
常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth.Apriori通过不断的构造候选集.筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数 ...
- 机器学习(十五)— Apriori算法、FP Growth算法
1.Apriori算法 Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策. Apriori算法采用了迭代的方法,先搜 ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- 【机器学习实战学习笔记(1-1)】k-近邻算法原理及python实现
笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 ...
- Frequent Pattern 挖掘之二(FP Growth算法)(转)
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...
随机推荐
- COGS——T 2057. [ZLXOI2015]殉国
http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆ 输入文件:BlackHawk.in 输出文件:BlackHawk.out 评测插件 ...
- 洛谷 P2562 [AHOI2002]Kitty猫基因编码
P2562 [AHOI2002]Kitty猫基因编码 题目描述 小可可选修了基础生物基因学.教授告诉大家 Super Samuel 星球上 Kitty猫的基因的长度都是 2 的正整数次幂 ), 全是由 ...
- ShopEx 中规格属性添加时,自己主动计算其相应的销售价格,同一时候注意模板中的变量间的计算
在ShopEx中,添加产品的规格时,如颜色.尺寸.是否送货等配置信息,默认情况下,这些内容是须要手动计算的,若仅仅有几个属性值还easy计算,假设每个属性值比較多,通过手动计算将是一个灰常巨大的工作量 ...
- HTML的SEO(搜索引擎优化)标准
HTML的SEO(搜索引擎优化)标准 一.总结 这个做seo的时候要多看,做网站优化的时候 1. SEO(搜索引擎优化):通过总结搜索引擎的排名规律,对网站进行合理优化,使你的网站在百度和Google ...
- PowerApps和Flow,Power BI开发
为PowerApps和Flow,Power BI开发自定义连接器 作者:陈希章 发表于 2017年12月20日 前言 我在之前用了几篇文章来介绍新一代微软商业应用平台三剑客(PowerApps,Mic ...
- Stack overflow 编译能通过,运行时出现Stack overflow
Stack overflow 编译能通过,运行时出现Stack overflow 大家都知道,Windows程序的内存机制大概是这样的,全局变量(局部的静态变量本质也属于此范围)存储于堆内存,该段内存 ...
- 【例题 7-5 UVA - 129】Krypton Factor
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每次枚举增加一个字符; 然后看看新生成的字符的后缀里面有没有出现连续子串就好,前面已经确认过的没必要重复确认 (枚举长度为偶数的一个 ...
- sass和less,优秀的前端样式预处理器
身为切图界的一员,或者说在前端界打滚了一段日子的你.会慢慢地发现.如今的css编写已经不能满足自己的效率. 假设有更强大的框架,让你的css更灵活和更easy复用和维护,那该多好啊.非常明显,这个早已 ...
- python3 偏最小二乘法实现
python3的sklearn库中有偏最小二乘法. 可以参见下面的库说明:http://scikit-learn.org/stable/modules/generated/sklearn.cross_ ...
- POJ 3468 A Simple Problem with Integers 线段树区间修改
http://poj.org/problem?id=3468 题目大意: 给你N个数还有Q组操作(1 ≤ N,Q ≤ 100000) 操作分为两种,Q A B 表示输出[A,B]的和 C A B ...