Anton and Permutation
time limit per test

4 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Anton likes permutations, especially he likes to permute their elements. Note that a permutation of n elements is a sequence of numbers{a1, a2, ..., an}, in which every number from 1 to n appears exactly once.

One day Anton got a new permutation and started to play with it. He does the following operation q times: he takes two elements of the permutation and swaps these elements. After each operation he asks his friend Vanya, how many inversions there are in the new permutation. The number of inversions in a permutation is the number of distinct pairs (i, j) such that 1 ≤ i < j ≤ n and ai > aj.

Vanya is tired of answering Anton's silly questions. So he asked you to write a program that would answer these questions instead of him.

Initially Anton's permutation was {1, 2, ..., n}, that is ai = i for all i such that 1 ≤ i ≤ n.

Input

The first line of the input contains two integers n and q (1 ≤ n ≤ 200 000, 1 ≤ q ≤ 50 000) — the length of the permutation and the number of operations that Anton does.

Each of the following q lines of the input contains two integers li and ri (1 ≤ li, ri ≤ n) — the indices of elements that Anton swaps during the i-th operation. Note that indices of elements that Anton swaps during the i-th operation can coincide. Elements in the permutation are numbered starting with one.

Output

Output q lines. The i-th line of the output is the number of inversions in the Anton's permutation after the i-th operation.

Examples
input
5 4
4 5
2 4
2 5
2 2
output
1
4
3
3
input
2 1
2 1
output
1
input
6 7
1 4
3 5
2 3
3 3
3 6
2 1
5 1
output
5
6
7
7
10
11
8
Note

Consider the first sample.

After the first Anton's operation the permutation will be {1, 2, 3, 5, 4}. There is only one inversion in it: (4, 5).

After the second Anton's operation the permutation will be {1, 5, 3, 2, 4}. There are four inversions: (2, 3), (2, 4), (2, 5) and (3, 4).

After the third Anton's operation the permutation will be {1, 4, 3, 2, 5}. There are three inversions: (2, 3), (2, 4) and (3, 4).

After the fourth Anton's operation the permutation doesn't change, so there are still three inversions.

分析:主席树套树状数组,注意开始静态建树,防止爆内存;

   分块法待学,orz~

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=5e4+;
const int N=2e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
int n,m,k,t,s[maxn**+N*],ls[maxn**+N*],rs[maxn**+N*],root[N*],lx[],rx[],rt[maxn<<],pos[maxn<<],sz;
ll ret;
void insert(int l,int r,int x,int &y,int z,int k,int t)
{
if(!t)y=++sz;
else if(t&&!y)y=++sz;
s[y]=s[x]+k;
if(l==r)return;
int mid=l+r>>;
ls[y]=ls[x],rs[y]=rs[x];
if(z<=mid)insert(l,mid,ls[x],ls[y],z,k,t);
else insert(mid+,r,rs[x],rs[y],z,k,t);
}
void add(int x,int y,int z)
{
while(y<=n)
{
insert(,n,rt[y],rt[y],x,z,);
y+=y&(-y);
}
}
int ask_more(int x,int y,int z)
{
int l=,r=n,ret=,i;
while(l!=r)
{
int mid=l+r>>;
if(x<=mid)
{
rep(i,,lx[])ret-=s[rs[lx[i]]],lx[i]=ls[lx[i]];
rep(i,,rx[])ret+=s[rs[rx[i]]],rx[i]=ls[rx[i]];
ret-=s[rs[y]],y=ls[y];
ret+=s[rs[z]],z=ls[z];
r=mid;
}
else
{
rep(i,,lx[])lx[i]=rs[lx[i]];
rep(i,,rx[])rx[i]=rs[rx[i]];
y=rs[y],z=rs[z];
l=mid+;
}
}
return ret;
}
int gao(int x,int l,int r)
{
int ret=,_l=l,_r=r;
lx[]=rx[]=;
while(l)lx[++lx[]]=rt[l],l-=l&(-l);
while(r)rx[++rx[]]=rt[r],r-=r&(-r);
ret+=ask_more(x,root[_l],root[_r]);
return ret;
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
rep(i,,n)pos[i]=i,insert(,n,root[i-],root[i],i,,);
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
if(a==b)
{
printf("%lld\n",ret);
continue;
}
if(pos[a]>pos[b])swap(a,b);
int x=gao(a,pos[a]-,pos[b]),y=gao(b,pos[a]-,pos[b]);
ret+=x-(pos[b]-pos[a]-x);
ret-=y-(pos[b]-pos[a]-y);
if(a<b)ret--;
else ret++;
printf("%lld\n",ret);
add(a,pos[a],-);
add(b,pos[b],-);
add(a,pos[b],);
add(b,pos[a],);
swap(pos[a],pos[b]);
}
return ;
}

Anton and Permutation的更多相关文章

  1. Codeforces785E - Anton and Permutation

    Portal Description 对一个长度为\(n(n\leq2\times10^5)\)的数列\(a\)进行\(m(m\leq5\times10^4)\)次操作,数列初始时为\(\{1,2,. ...

  2. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  3. Codeforces 785 E. Anton and Permutation(分块,树状数组)

    Codeforces 785 E. Anton and Permutation 题目大意:给出n,q.n代表有一个元素从1到n的数组(对应索引1~n),q表示有q个查询.每次查询给出两个数l,r,要求 ...

  4. Codeforces 785E. Anton and Permutation

    题目链接:http://codeforces.com/problemset/problem/785/E 其实可以CDQ分治... 我们只要用一个数据结构支持单点修改,区间查询比一个数大(小)的数字有多 ...

  5. [CF785E]Anton and Permutation

    题目大意:有一串数为$1\sim n(n\leqslant2\times10^5)$,$m(m\leqslant5\times10^4)$次询问,每次问交换位置为$l,r$的两个数后数列中逆序对的个数 ...

  6. Codeforces 785E Anton and Permutation(分块)

    [题目链接] http://codeforces.com/contest/785/problem/E [题目大意] 一个1到n顺序排列的数列,每次选择两个位置的数进行交换,求交换后的数列的逆序对数 [ ...

  7. CodeForces 785E Anton and Permutation 分块

    题意: 有一个\(1 \sim n\)的排列\(A\),有\(q\)个询问: 交换任意两个元素的位置,求交换之后排列的逆序数 分析: 像这种不太容易用线段树,树状数组维护的可以考虑分块 每\(\sqr ...

  8. 【codeforces 785E】Anton and Permutation

    [题目链接]:http://codeforces.com/problemset/problem/785/E [题意] 给你一个初始序列1..n顺序 然后每次让你交换任意两个位置上面的数字; 让你实时输 ...

  9. 题解 CF785E 【Anton and Permutation】

    考虑用分块解决这个题,一次交换对当前逆序对个数的影响是,加上两倍的在区间\([l+1,r-1]\)中比\(a_r\)小的元素个数,减去两倍的在区间\([l+1,r-1]\)中比\(a_l\)小的元素个 ...

随机推荐

  1. JSP-Runoob:JSP 发送邮件

    ylbtech-JSP-Runoob:JSP 发送邮件 1.返回顶部 1. JSP 发送邮件 虽然使用JSP实现邮件发送功能很简单,但是需要有JavaMail API,并且需要安装JavaBean A ...

  2. 60.extjs-布局 (在column布局中使用fieldset 和 在fieldset中使用column布局)

    转自:https://blog.csdn.net/snn1410/article/details/8817821/ 在标准的html中,需要把输入项都放到fieldset中,一次来显示分组结构.虽然E ...

  3. 使用js模拟ecshop元素挪移

    <!DOCTYPE html><html><head> <title>移动</title> <script src="jqu ...

  4. JQuery 总结

     JQuery官方网站 http://jquery.com/ 1.JQuery概念 A.Jquery是一个优秀的Javascript框架.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器,jQu ...

  5. robotframework - 运行报错提示 No keyword with name 'Open Browser' found.

    用下面的例子为例: 1.输入以上robot脚本提示: 2.经查阅资料,大部分都使用的是selenium2 版本,无法解该的问题,目前小编使用的是selenium3,不知道selenium是哪个版本的话 ...

  6. Django day30 自定义配置settings文件,分页器,版本控制

    一:自定义配置settings文件 1.有两套配置文件,默认配置,用户的配置 2.如果某个字段,用户配置了,就用用户的,如果没配置,就用默认的 二:分页器 1.三种分页: # 普通分页 from re ...

  7. python中的深拷贝和浅拷贝(面试题二)

    一.浅拷贝 定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值. 浅拷贝的特点: 公用一个值: 这两个变量的内存地址一样: 对其中一个变量的值改变,另外一个变量的值也 ...

  8. Zookeeper的临时节点和永久节点

    Zookeeper中节点分为两种:临时节点和永久节点. 临时节点有一个节点: 当创建临时节点的程序停掉之后,这个临时节点就会消失. 更直观的,如下   Persistent是临时节点. Persist ...

  9. Android 自己搭建一个直播系统吧

    服务端用 SRS(Simple Rtmp Server),在这里下载simple-rtmp-server需要Linux系统最好是Ubuntu,装个Ubuntu虚拟机就行了在Linux里,解压缩SRS ...

  10. Android FileProvider相关 Failed to find configured root that contains

    问题: 使用FileProvider构造SD卡中文件uri时异常 java.lang.IllegalArgumentException: Failed to find configured root ...