Description

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to
grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also
a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible
in the estate given by the lord. 

For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 

 

Figure 1: Examples of Rectangular Estates


Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 





W H 

x1 y1 

x2 y2 

... 

xN yN 

S T 



N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 



The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

Source



题意:
有N棵树在一个n*m的田里,给出每颗树的坐标
用一个s*t的矩形去围,最多能围几棵树

思路:
简单的二维树状数组

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; int c[N][N],n,m,cnt,s,t; int sum(int x,int y)
{
int ret = 0;
int i,j;
for(i = x;i>=1;i-=lowbit(i))
{
for(j = y;j>=1;j-=lowbit(j))
{
ret+=c[i][j];
}
}
return ret;
} void add(int x,int y,int d)
{
int i,j;
for(i = x;i<=n;i+=lowbit(i))
{
for(j = y;j<=m;j+=lowbit(j))
{
c[i][j]+=d;
}
}
} int main()
{
int i,j,x,y,ans;
while(~scanf("%d",&cnt),cnt)
{
ans = 0;
scanf("%d%d",&n,&m);
MEM(c,0);
for(i = 1;i<=cnt;i++)
{
scanf("%d%d",&x,&y);
add(x,y,1);
}
scanf("%d%d",&s,&t);
for(i = 1;i<=n;i++)
{
for(j = 1;j<=m;j++)
{
int x1 = i,y1 = j,x2 = x1+s-1,y2 = y1+t-1;
if(x2>n || y2>m) continue;
int s = sum(x2,y2)+sum(x1-1,y1-1)-sum(x2,y1-1)-sum(x1-1,y2);
ans = max(ans,s);
}
}
printf("%d\n",ans);
} return 0;
}

POJ2029:Get Many Persimmon Trees(二维树状数组)的更多相关文章

  1. POJ 2029 Get Many Persimmon Trees (二维树状数组)

    Get Many Persimmon Trees Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d & %I ...

  2. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

  3. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  4. Get Many Persimmon Trees_枚举&&二维树状数组

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  5. 二维树状数组 BZOJ 1452 [JSOI2009]Count

    题目链接 裸二维树状数组 #include <bits/stdc++.h> const int N = 305; struct BIT_2D { int c[105][N][N], n, ...

  6. HDU1559 最大子矩阵 (二维树状数组)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1559 最大子矩阵 Time Limit: 30000/10000 MS (Java/Others)  ...

  7. POJMatrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22058   Accepted: 8219 Descripti ...

  8. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  9. Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*

    D. Iahub and Xors   Iahub does not like background stories, so he'll tell you exactly what this prob ...

随机推荐

  1. CSUOJ 1651 Weirdo

    1651: Weirdo Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 40  Solved: 21[Submit][Status][Web Board ...

  2. HDU 4971 A simple brute force problem.

    A simple brute force problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged o ...

  3. Netty In Action中文版 - 第七章:编解码器Codec

    http://blog.csdn.net/abc_key/article/details/38041143 本章介绍 Codec,编解码器 Decoder,解码器 Encoder,编码器 Netty提 ...

  4. OpenCASCADE Extended Data Exchange - XDE

    OpenCASCADE Extended Data Exchange - XDE eryar@163.com Abstract. OpenCASCADE Data Exchange allows de ...

  5. HDU1788 Chinese remainder theorem again【中国剩余定理】

    题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...

  6. jQuery08源码 (5140 , 6057) DOM操作 : 添加 删除 获取 包装 DOM筛选

    jQuery.fn.extend({ //$('ul').find('li').css('background','red'); //$('ul').find( $('li') ).css('back ...

  7. vim 基础学习之普通模式

    .操作 = 操作符 + 动作 aaa bbb例如,d是删除命令,b是移动到距离光标最近的字符串开头当我们执行db的时候,就会删除光标(不包括光标位置)到最近字串开头之间的字符dj则会删除光标所在行以及 ...

  8. ubuntu adb 安装

    ubuntu 下adb 安装,其实就是下载一个adb,然后给它赋予可执行权限,最后在环境变量里添加一下罢了.具体如下 1.下载adb 这个工具其实是在sdk工具包里面的platform-tools文件 ...

  9. amaze ui响应式辅助

    amaze ui响应式辅助 响应式辅助 就是不同的显示屏幕,或者手机的横竖屏,你可以控制栏目的显影,还是挺有帮助的 视口大小 .am-[show|hide]-[sm|md|lg][-up|-down| ...

  10. 5.brackets 快捷键 有大用

    转自:https://blog.csdn.net/u012011360/article/details/41209223 ctrl+b 当选中一个文本时,会出现相同的文本,被高亮显示 按ctrl+b ...