POJ2029:Get Many Persimmon Trees(二维树状数组)
Description
grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also
a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible
in the estate given by the lord.
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.
Input
N
W H
x1 y1
x2 y2
...
xN yN
S T
N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.
The end of the input is indicated by a line that solely contains a zero.
Output
Sample Input
16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0
Sample Output
4
3
Source
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; int c[N][N],n,m,cnt,s,t; int sum(int x,int y)
{
int ret = 0;
int i,j;
for(i = x;i>=1;i-=lowbit(i))
{
for(j = y;j>=1;j-=lowbit(j))
{
ret+=c[i][j];
}
}
return ret;
} void add(int x,int y,int d)
{
int i,j;
for(i = x;i<=n;i+=lowbit(i))
{
for(j = y;j<=m;j+=lowbit(j))
{
c[i][j]+=d;
}
}
} int main()
{
int i,j,x,y,ans;
while(~scanf("%d",&cnt),cnt)
{
ans = 0;
scanf("%d%d",&n,&m);
MEM(c,0);
for(i = 1;i<=cnt;i++)
{
scanf("%d%d",&x,&y);
add(x,y,1);
}
scanf("%d%d",&s,&t);
for(i = 1;i<=n;i++)
{
for(j = 1;j<=m;j++)
{
int x1 = i,y1 = j,x2 = x1+s-1,y2 = y1+t-1;
if(x2>n || y2>m) continue;
int s = sum(x2,y2)+sum(x1-1,y1-1)-sum(x2,y1-1)-sum(x1-1,y2);
ans = max(ans,s);
}
}
printf("%d\n",ans);
} return 0;
}
POJ2029:Get Many Persimmon Trees(二维树状数组)的更多相关文章
- POJ 2029 Get Many Persimmon Trees (二维树状数组)
Get Many Persimmon Trees Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I ...
- POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)
题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...
- POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】
<题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...
- Get Many Persimmon Trees_枚举&&二维树状数组
Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...
- 二维树状数组 BZOJ 1452 [JSOI2009]Count
题目链接 裸二维树状数组 #include <bits/stdc++.h> const int N = 305; struct BIT_2D { int c[105][N][N], n, ...
- HDU1559 最大子矩阵 (二维树状数组)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1559 最大子矩阵 Time Limit: 30000/10000 MS (Java/Others) ...
- POJMatrix(二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 22058 Accepted: 8219 Descripti ...
- poj 1195:Mobile phones(二维树状数组,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14489 Accepted: 6735 De ...
- Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*
D. Iahub and Xors Iahub does not like background stories, so he'll tell you exactly what this prob ...
随机推荐
- 【使用uWSGI和Nginx来设置Django和你的Web服务器】
目录 安装使用uWSGI 配置Nginx结合uWSGI supervisor Django静态文件与Nginx配置 @ *** 所谓WSGI . WSGI是Web服务器网关接口,它是一个规范,描述了W ...
- H+后台主题UI框架---整理
本篇文章是对H+这种框架进行整理,顺便了解一下标准的代码规范的写法. 一.表单: 1).下面是一个基本表单: 现在来看这个表单的结构: 1.整个表单的外框结构是一个div,至于padding和marg ...
- 具体解释NoSQL数据库使用实例
一.NoSQL基础知识 1.关于NoSQL 在"NoSQL"一词.实际上是一个叫Racker的同事创造的,当约翰埃文斯埃里克要组织一次活动来讨论开源的分布式数据库. 这个名称和概念 ...
- ActiveReports 9实战教程(2): 准备数据源(设计时、执行时)
在上讲中<ActiveReports 9实战教程(1): 手把手搭建好开发环境Visual Studio 2013 社区版>,我们已经结合Visual Studio 2013搭建好了Act ...
- Android Studio 解决unspecified on project app resolves to an APK archive which is not supported
出现该问题unspecified on project app resolves to an APK archive which is not supported as a compilation d ...
- C# 使用 X.509 v.3 证书的方法。
C# 使用 X.509 v.3 证书的方法. public static void Main() { // The path to the certificate. string ...
- C/C++(共用体与枚举)
共用(Union)与枚举(Enum) 共同体 c语言中,不同的成员使用共同的存储区域的数据结构类型称为共用体.(共用,联合体),共用体在定义,说明,适用形式上与结构体相似.两者本质上的不同在于使用内存 ...
- Java证书通信
一.概念介绍: 加密是将数据资料加密,使得非法用户即使取得加密过的资料,也无法获取正确的资料内容,所以数据加密可以保护数据,防止监听攻击.其重点在于数据的安全性.身份认证是用来判断某个身份的真实性 ...
- c# winform 技术提升
http://www.cnblogs.com/junjie94wan/category/303961.html http://www.cnblogs.com/springyangwc/archive/ ...
- JS-网页中分页栏
原理 三部分 我给分页栏分成了3部分 上一页:调用prePage()函数 下一页:调用nextPage()函数 带有数字标识的部,调用skipPage()函数 prePage函数 function p ...