<Sicily> Longest Common Subsequence
一、题目描述
Given a sequence A = < a1, a2, …, am >, let sequence B = < b1, b2, …, bk > be a subsequence of A if there exists a strictly increasing sequence ( i1 < i2 < i3 …, ik ) of indices of A such that for all j = 1,2,…,k, aij = bj. For example, B = < a, b, c, d > is a subsequence of A= < a, b, c, f, d, c > with index sequence < 1, 2, 3 ,5 >。
Given two sequences X and Y, you need to find the length of the longest common subsequence of X and Y.
二、输入
The input may contain several test cases.
The first line of each test case contains two integers N (the length of X) and M(the length of Y), The second line contains the sequence X, the third line contains the sequence Y, X and Y will be composed only from lowercase letters. (1<=N, M<=100)
Input is terminated by EOF.
三、输出
Output the length of the longest common subsequence of X and Y on a single line for each test case.
例如:
输入:
6 4
abcfdc
abcd
2 2
ab
cd
输出:
4
0
四、解题思路
这道题需要求的是最长公共子序列,典型的动态规划问题。
设序列1:X = < x1, x2, x3, …, xm>,子序列2:Y=< y1, y2, y3,…yn>。假如他们的最长公共子序列为Z=< z1, z2, z3,…zk>那么k就是我们需要求的长度。
由上面假设可以推出:
1)如果xm=yn,那么必有xm=yn=zk,且< x1,x2,x3,…xm-1>与< y1,y2,y3,…yn-1>的最长公共子序列为< z1, z2, z3,…zk-1>
2)如果xm!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm-1>与< y1, y2, y3,…yn>的最长公共子序列。
3)如果yn!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm>与< y1, y2, y3,…yn-1>的最长公共子序列。
由此可以逆推。于是有以下公式:
五、代码
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int strALeng, strBLeng;
while(cin >> strALeng >> strBLeng)
{
int charMatrix[101][101];
char charAAry[strALeng];
char charBAry[strBLeng];
for(int i = 0; i < strALeng; i++)
cin >> charAAry[i];
for(int i = 0; i < strBLeng; i++)
cin >> charBAry[i];
for(int i = 0; i < strALeng; i++)
charMatrix[i][0] = 0;
for(int i = 0; i < strBLeng; i++)
charMatrix[0][i] = 0;
for(int i = 1; i <= strALeng; i++)
{
for(int j = 1; j <= strBLeng; j++)
{
if(charAAry[i - 1] == charBAry[j - 1]) charMatrix[i][j] = charMatrix[i - 1][j - 1] + 1;
else charMatrix[i][j] = max(charMatrix[i][j-1], charMatrix[i - 1][j]);
}
}
cout << charMatrix[strALeng][strBLeng] << endl;
}
return 0;
}
<Sicily> Longest Common Subsequence的更多相关文章
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- [UCSD白板题] Longest Common Subsequence of Three Sequences
Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Dynamic Programming | Set 4 (Longest Common Subsequence)
首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...
- [HackerRank] The Longest Common Subsequence
This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...
随机推荐
- HDOJ find the safest road 1596【最短路变形】
find the safest road Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- Android ImageView 不显示JPEG图片 及 Android Studio中怎样引用图片资源
Android ImageView 不显示JPEG图片 今天在写一个小实例,ImageView在xml里面设置的是INVISIBLE,在代码里须要设置成setVisibility(View.VISIB ...
- MS UI Automation简介
转自:http://blog.csdn.net/ffeiffei/article/details/6637418 MS UI Automation(Microsoft User Interface A ...
- node--20 moogose demo2
db.js /** * Created by Danny on 2015/9/28 16:44. */ //引包 var mongoose = require('mongoose'); //创建数据库 ...
- KMP算法中求next数组的实质
在串匹配模式中,KMP算法较蛮力法是高效的算法,我觉得其中最重要的一点就是求next数组: 看了很多资料才弄明白求next数组是怎么求的,我发现我的忘性真的比记性大很多,每次看到KMP算法求next数 ...
- DISM
C:\WINDOWS\system32>DISM /Online /Cleanup-image /RestoreHealth 部署映像服务和管理工具版本: 10.0.16193.1001 映像版 ...
- Servlet学习(九)——request
request运行流程在Servlet学习(四)——response已介绍,不再赘述 1.通过抓包工具获取Http请求 因为request代表请求,所以我们可以通过该对象分别获得Http请求的请求行, ...
- ORA-01658无法为表空间中的段创建INITIAL区
导出空表设置时,提示错误是: ORA-01658无法为表空间中的段创建INITIAL区 查找解决方案为 表空间已满 设置表空间自动增长 即可 例: alter database datafil ...
- swift语言点评十九-类型转化与检查
1.oc比较: -(BOOL) isKindOfClass: classObj判断是否是这个类或者这个类的子类的实例 -(BOOL) isMemberOfClass: classObj 判断是否是这个 ...
- 集合(set)的基本操作
集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 集合中的元素必须是不可变类型 关系测试,测试两组数据之前的交集.差集.并集等关系 常用操作 a = se ...