一、题目描述

Given a sequence A = < a1, a2, …, am >, let sequence B = < b1, b2, …, bk > be a subsequence of A if there exists a strictly increasing sequence ( i1 < i2 < i3 …, ik ) of indices of A such that for all j = 1,2,…,k, aij = bj. For example, B = < a, b, c, d > is a subsequence of A= < a, b, c, f, d, c > with index sequence < 1, 2, 3 ,5 >。

Given two sequences X and Y, you need to find the length of the longest common subsequence of X and Y.

二、输入

The input may contain several test cases.

The first line of each test case contains two integers N (the length of X) and M(the length of Y), The second line contains the sequence X, the third line contains the sequence Y, X and Y will be composed only from lowercase letters. (1<=N, M<=100)

Input is terminated by EOF.

三、输出

Output the length of the longest common subsequence of X and Y on a single line for each test case.

例如:

输入:

6 4

abcfdc

abcd

2 2

ab

cd

输出:

4

0

四、解题思路

这道题需要求的是最长公共子序列,典型的动态规划问题。

设序列1:X = < x1, x2, x3, …, xm>,子序列2:Y=< y1, y2, y3,…yn>。假如他们的最长公共子序列为Z=< z1, z2, z3,…zk>那么k就是我们需要求的长度。

由上面假设可以推出:

1)如果xm=yn,那么必有xm=yn=zk,且< x1,x2,x3,…xm-1>与< y1,y2,y3,…yn-1>的最长公共子序列为< z1, z2, z3,…zk-1>

2)如果xm!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm-1>与< y1, y2, y3,…yn>的最长公共子序列。

3)如果yn!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm>与< y1, y2, y3,…yn-1>的最长公共子序列。

由此可以逆推。于是有以下公式:

五、代码

#include<iostream>
#include<math.h> using namespace std; int main()
{
int strALeng, strBLeng;
while(cin >> strALeng >> strBLeng)
{
int charMatrix[101][101]; char charAAry[strALeng];
char charBAry[strBLeng]; for(int i = 0; i < strALeng; i++)
cin >> charAAry[i]; for(int i = 0; i < strBLeng; i++)
cin >> charBAry[i]; for(int i = 0; i < strALeng; i++)
charMatrix[i][0] = 0; for(int i = 0; i < strBLeng; i++)
charMatrix[0][i] = 0; for(int i = 1; i <= strALeng; i++)
{
for(int j = 1; j <= strBLeng; j++)
{
if(charAAry[i - 1] == charBAry[j - 1]) charMatrix[i][j] = charMatrix[i - 1][j - 1] + 1;
else charMatrix[i][j] = max(charMatrix[i][j-1], charMatrix[i - 1][j]);
}
} cout << charMatrix[strALeng][strBLeng] << endl; } return 0;
}

<Sicily> Longest Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  7. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  8. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  9. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  10. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

随机推荐

  1. 公布自己的pods到CocoaPods trunk 及问题记录

    这两天准备把之前写的一些小玩意加入到pods库中去,參考了一些资料后进行操作,实际中也遇到了一些问题,记录下来.问题及解决方案在后面. 參考内容转载例如以下: 首先更新了用trunk之后,CocoaP ...

  2. MongoDB增加数据

    MongoDB中出了增加之外,其他的操作都很麻烦. 例子: 1.简单的 db.infos.insert({"url":"www.baidu.com"}); 2. ...

  3. CreateProcess

    #include <Windows.h> //WINBASEAPI //BOOL //WINAPI //CreateProcessW( //_In_opt_ LPCWSTR lpAppli ...

  4. vue中响应式props办法

    title: vue中响应式props办法 toc: false date: 2018-12-25 21:22:49 categories: Web tags: Vue 更新props数据时,使用th ...

  5. spring boot integrated mybatis three ways!--转

    https://github.com/spring-projects/spring-boot/issues/5400 一.使用mybatis-spring-boot-starter1.添加依赖 org ...

  6. 关于JQuery中的事件冒泡

    什么是事件冒泡? 事件冒泡就是当父元素和子元素存在同一事件时在子元素的事件处理程序中会自动调用其父级元素的事件处理程序. demo: <!DOCTYPE html> <html xm ...

  7. (转载)自定义View——弹性滑动

    滑动是Android开发中非常重要的UI效果,几乎所有应用都包含了滑动效果,而本文将对滑动的使用以及原理进行介绍. 一.scrollTo与ScrollBy View提供了专门的方法用于实现滑动效果,分 ...

  8. H5中嵌入flash

    <object height="900px" width="100%" classid="clsid:D27CDB6E-AE6D-11cf-96 ...

  9. SP1487 PT07J - Query on a tree III 主席树+dfs序

    Code: #include<iostream> #include<cstdio> #include<algorithm> #include<string&g ...

  10. NodeJS学习笔记 (6)网络服务-http-res(ok)

    原文:https://github.com/chyingp/nodejs-learning-guide 自己敲代码: 概览 http模块四剑客之一的res,应该都不陌生了.一个web服务程序,接受到来 ...