一、题目描述

Given a sequence A = < a1, a2, …, am >, let sequence B = < b1, b2, …, bk > be a subsequence of A if there exists a strictly increasing sequence ( i1 < i2 < i3 …, ik ) of indices of A such that for all j = 1,2,…,k, aij = bj. For example, B = < a, b, c, d > is a subsequence of A= < a, b, c, f, d, c > with index sequence < 1, 2, 3 ,5 >。

Given two sequences X and Y, you need to find the length of the longest common subsequence of X and Y.

二、输入

The input may contain several test cases.

The first line of each test case contains two integers N (the length of X) and M(the length of Y), The second line contains the sequence X, the third line contains the sequence Y, X and Y will be composed only from lowercase letters. (1<=N, M<=100)

Input is terminated by EOF.

三、输出

Output the length of the longest common subsequence of X and Y on a single line for each test case.

例如:

输入:

6 4

abcfdc

abcd

2 2

ab

cd

输出:

4

0

四、解题思路

这道题需要求的是最长公共子序列,典型的动态规划问题。

设序列1:X = < x1, x2, x3, …, xm>,子序列2:Y=< y1, y2, y3,…yn>。假如他们的最长公共子序列为Z=< z1, z2, z3,…zk>那么k就是我们需要求的长度。

由上面假设可以推出:

1)如果xm=yn,那么必有xm=yn=zk,且< x1,x2,x3,…xm-1>与< y1,y2,y3,…yn-1>的最长公共子序列为< z1, z2, z3,…zk-1>

2)如果xm!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm-1>与< y1, y2, y3,…yn>的最长公共子序列。

3)如果yn!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm>与< y1, y2, y3,…yn-1>的最长公共子序列。

由此可以逆推。于是有以下公式:

五、代码

#include<iostream>
#include<math.h> using namespace std; int main()
{
int strALeng, strBLeng;
while(cin >> strALeng >> strBLeng)
{
int charMatrix[101][101]; char charAAry[strALeng];
char charBAry[strBLeng]; for(int i = 0; i < strALeng; i++)
cin >> charAAry[i]; for(int i = 0; i < strBLeng; i++)
cin >> charBAry[i]; for(int i = 0; i < strALeng; i++)
charMatrix[i][0] = 0; for(int i = 0; i < strBLeng; i++)
charMatrix[0][i] = 0; for(int i = 1; i <= strALeng; i++)
{
for(int j = 1; j <= strBLeng; j++)
{
if(charAAry[i - 1] == charBAry[j - 1]) charMatrix[i][j] = charMatrix[i - 1][j - 1] + 1;
else charMatrix[i][j] = max(charMatrix[i][j-1], charMatrix[i - 1][j]);
}
} cout << charMatrix[strALeng][strBLeng] << endl; } return 0;
}

<Sicily> Longest Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  7. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  8. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  9. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  10. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

随机推荐

  1. HDOJ find the safest road 1596【最短路变形】

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. Android ImageView 不显示JPEG图片 及 Android Studio中怎样引用图片资源

    Android ImageView 不显示JPEG图片 今天在写一个小实例,ImageView在xml里面设置的是INVISIBLE,在代码里须要设置成setVisibility(View.VISIB ...

  3. MS UI Automation简介

    转自:http://blog.csdn.net/ffeiffei/article/details/6637418 MS UI Automation(Microsoft User Interface A ...

  4. node--20 moogose demo2

    db.js /** * Created by Danny on 2015/9/28 16:44. */ //引包 var mongoose = require('mongoose'); //创建数据库 ...

  5. KMP算法中求next数组的实质

    在串匹配模式中,KMP算法较蛮力法是高效的算法,我觉得其中最重要的一点就是求next数组: 看了很多资料才弄明白求next数组是怎么求的,我发现我的忘性真的比记性大很多,每次看到KMP算法求next数 ...

  6. DISM

    C:\WINDOWS\system32>DISM /Online /Cleanup-image /RestoreHealth 部署映像服务和管理工具版本: 10.0.16193.1001 映像版 ...

  7. Servlet学习(九)——request

    request运行流程在Servlet学习(四)——response已介绍,不再赘述 1.通过抓包工具获取Http请求 因为request代表请求,所以我们可以通过该对象分别获得Http请求的请求行, ...

  8. ORA-01658无法为表空间中的段创建INITIAL区

    导出空表设置时,提示错误是: ORA-01658无法为表空间中的段创建INITIAL区 查找解决方案为 表空间已满    设置表空间自动增长 即可 例:  alter database datafil ...

  9. swift语言点评十九-类型转化与检查

    1.oc比较: -(BOOL) isKindOfClass: classObj判断是否是这个类或者这个类的子类的实例 -(BOOL) isMemberOfClass: classObj 判断是否是这个 ...

  10. 集合(set)的基本操作

    集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 集合中的元素必须是不可变类型 关系测试,测试两组数据之前的交集.差集.并集等关系 常用操作 a = se ...