Aizu - 2305 Beautiful Currency (二分 + DFS遍历)
F. Beautiful Currency
cid=6641#" class="submitprob button ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="margin:0px 0.1em 0px -1px; padding:0px; text-decoration:none; font-family:'Trebuchet MS',Helvetica,Arial,sans-serif; font-size:1.1em; border:1px solid rgb(204,204,204); font-weight:bold; color:rgb(68,68,68); display:inline-block; position:relative; zoom:1; overflow:visible">Submit
Status PID:39422
+
-
Beautiful Currency
KM country has N kinds of coins and each coin has its value a_i.
The king of the country, Kita_masa, thought that the current currency system is poor, and he decided to make it beautiful by changing the values of some (possibly no) coins.
A currency system is called beautiful if each coin has an integer value and the (i+1)-th smallest value is divisible by the i-th
smallest value for all i (1 ¥leq i ¥leq N-1).
For example, the set {1, 5, 10, 50, 100, 500} is considered as a beautiful system, while the set {1, 5, 10, 25, 50, 100} is
NOT, because 25 is not divisible by 10.
Since changing the currency system may confuse citizens, the king, Kita_masa, wants to minimize the maximum value of the confusion ratios. Here, the confusion ratio for the change in the i-th
coin is defined as |a_i - b_i| / a_i, where a_i and b_i is
the value of i-th coin before and after the structure changes, respectively.
Note that Kita_masa can change the value of each existing coin, but he cannot introduce new coins nor eliminate existing coins. After the modification, the values of two or more coins may coincide.
Input
Each dataset contains two lines. The first line contains a single integer, N, and the second line contains N integers, {a_i}.
You may assume the following constraints:
1 ¥leq N ¥leq 20
1 ¥leq a_1 ¥lt a_2 ¥lt... ¥lt a_N ¥lt 10^5
Output
Output one number that represents the minimum of the maximum value of the confusion ratios. The value may be printed with an arbitrary number of decimal digits, but may not contain an absolute error greater than or equal to 10^{-8}.
Sample Input 1
3
6 11 12
Output for the Sample Input 1
0.090909090909
Sample Input 2
3
6 11 24
Output for the Sample Input 2
0.090909090909
Sample Input 3
3
6 11 30
Output for the Sample Input 3
0.166666666667
二分P能够得到每个数的变化范围[n - n * P, n + n * P]中。接着就是检查是否存在一个序列满足后一个是前一个的倍数。
#include <map>
#include <set>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <queue>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include <ctime>
#include <cctype>
#include <algorithm>
using namespace std; #define pb push_back
#define mp make_pair
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a))
#define S_queue<P> priority_queue<P, vector<P>,greater<P> >
#define FIN freopen("D://imput.txt", "r", stdin) typedef long long LL;
typedef pair<int, int > PII;
typedef unsigned long long uLL;
template<typename T>
void print(T* p, T* q, string Gap = " "){int d = p < q ? 1 : -1;while(p != q){cout << *p;p += d;if(p != q) cout << Gap; }cout << endl;}
template<typename T>
void print(const T &a, string bes = "") {int len = bes.length();if(len >= 2)cout << bes[0] << a << bes[1] << endl;else cout << a << endl;} const int INF = 0x3f3f3f3f;
const int MAXM = 2e1 + 5;
const int MAXN = 1e2 + 5;
const double eps = 1e-8;
int A[MAXM], n;
double M; bool DFS(int x, int id, double Max, double m){//是否存在一个序列满足条件
if(id >= n) {
M = min(Max, M);//更新最大值
return true;
}
bool flag = false;
int f = (int)(A[id] * m);
int cnt = 1,Ma = A[id] + f,Mi = A[id] - f > 1 ? A[id] - f: 1;
while(cnt * x <= Ma){
if(cnt * x < Mi) {
cnt ++;
continue;
}
if(cnt * x >= Mi && cnt * x <= Ma){
double f_t = fabs(cnt * x - A[id]) / A[id] * 1.0;
if(DFS(cnt * x, id + 1, max(Max, f_t), m)) {
flag = true;
}
}
cnt ++;
}
return flag;
} bool C(double m){
bool flag = false;
int f = (int)(A[0] * m);
int Mi = A[0] - f > 1? A[0] - f : 1, Ma = A[0] + f;
for(int i = Mi;i <= Ma;i ++){
if(DFS(i, 1, fabs(A[0] - i) / A[0] * 1.0, m)) {
flag = true;
}
}
return flag;
} int main(){
//FIN;
while(cin >> n){
for(int i = 0;i < n;i ++){
cin >> A[i];
}
M = INF;
double lb = -1,ub = 1.0;
while(ub - lb > eps){
double mid = (ub + lb) / 2.0;
if(C(mid)) ub = mid;
else lb = mid;
}
printf("%.12lf\n", M);
}
return 0;
}
Aizu - 2305 Beautiful Currency (二分 + DFS遍历)的更多相关文章
- Aizu 2305 Beautiful Currency DP
Beautiful Currency Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest ...
- 【Aizu 2305】Beautiful Currency
题 题意 给你n个货币价格,然后通过调整一些货币的大小,使得所有比自己小的货币都是该货币的约数,调整前第 i 货币为a,调整后为b 那么变化率为 ri=|a-b|/a ,总变化率为max(ri).求最 ...
- 51nod1307(暴力树剖/二分&dfs/并查集)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1307 题意: 中文题诶~ 思路: 解法1:暴力树剖 用一个数 ...
- Codeforces Round #381 (Div. 2)D. Alyona and a tree(树+二分+dfs)
D. Alyona and a tree Problem Description: Alyona has a tree with n vertices. The root of the tree is ...
- 图之BFS和DFS遍历的实现并解决一次旅游中发现的问题
这篇文章用来复习使用BFS(Breadth First Search)和DFS(Depth First Search) 并解决一个在旅游时遇到的问题. 关于图的邻接表存储与邻接矩阵的存储,各有优缺点. ...
- 邻接表存储图,DFS遍历图的java代码实现
import java.util.*; public class Main{ static int MAX_VERTEXNUM = 100; static int [] visited = new i ...
- [BZOJ 1082] [SCOI2005] 栅栏 【二分 + DFS验证(有效剪枝)】
题目链接:BZOJ - 1082 题目分析 二分 + DFS验证. 二分到一个 mid ,验证能否选 mid 个根木棍,显然要选最小的 mid 根. 使用 DFS 验证,因为贪心地想一下,要尽量先用提 ...
- 【洛谷2403】[SDOI2010] 所驼门王的宝藏(Tarjan+dfs遍历)
点此看题面 大致题意: 一个由\(R*C\)间矩形宫室组成的宫殿中的\(N\)间宫室里埋藏着宝藏.由一间宫室到达另一间宫室只能通过传送门,且只有埋有宝藏的宫室才有传送门.传送门分为3种,分别可以到达同 ...
- 【算法】二叉树、N叉树先序、中序、后序、BFS、DFS遍历的递归和迭代实现记录(Java版)
本文总结了刷LeetCode过程中,有关树的遍历的相关代码实现,包括了二叉树.N叉树先序.中序.后序.BFS.DFS遍历的递归和迭代实现.这也是解决树的遍历问题的固定套路. 一.二叉树的先序.中序.后 ...
随机推荐
- 【iOS开发-78】用代码实现UITabBarController+UINavigationController
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd2Vpc3ViYW8=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- 关于心理的二十五种倾向(查理·芒格)-2
5)避免不一致倾向避免不一致倾向实际上就是人天生就害怕改变.相同是由于人类大脑的生理机制决定的.由于这样的倾向能够带来节省运算空间和能量的优点.这样的抗改变模式的形成,可能的原因例如以下:A) 迅速作 ...
- mysql设置远程訪问数据库的多种方法
问题:MySQL权限设置正确,但仍无法远程訪问.通过telnet发现3306port未打开. 分析:MySQL默认仅仅绑定127.0.0.1,即:仅仅有在本机才干訪问3306port. 解决:找到My ...
- 调用imagemagick做响应图片
设计出图后经常需要改下尺寸放在别的项目上使用,每次都是设计手工处理,其实图片服务可以做更多事情,比如借助强大的im,可以通过url控制图片尺寸 var childProcess = require(' ...
- Android Handler 具体解释
Android开发中常常使用Handler来实现"跨越线程(Activity)更新UI".本文将从源代码角度回答:为什么使用Handler可以跨线程更新UI?为什么跨线程更新UI一 ...
- 【转】使用Docker+Jenkins自动构建部署
转载自 https://segmentfault.com/a/1190000012921606 环境 阿里云ESC,宿主机服务器安装Docker,在安全规则中确认8080端口开启. 客户端mac 运行 ...
- BZOJ 3624 并查集 (Kruskal)
思路: 先把所有能加上的水泥路都加上 判断哪些是必加的鹅卵石路 再重新做一遍最小生成树 加上必加的鹅卵石路 一直加鹅卵石路 判一下是不是=k 最后加上水泥路就好了 //By SiriusRen #in ...
- 在Ubuntu Server下搭建LAMP环境
1 LAMP的安装 LAMP通常是指Linux+Apache+MySQL+PHP组合形成的一套可以运行PHP程序的体系,并不是一个软件的名称.没有安装MySQL的服务器依然可以在其它条件完备的情况下运 ...
- Hua Wei 机试题目四---2014
一.计算亮灯的个数 描述:一条长廊里依次装有n(1≤n≤65535)盏电灯,从头到尾编号1.2.3.…n-1.n.每盏电灯由一个拉线开关控制.开始,电灯全部关着. 有n个学生从长廊穿过.第一个学生把号 ...
- vue入门--初始化
VUE初始化时,可以用vue init webpack-simple或者vue init webpack.前者是简易版的工程,后者是标准的初始化.工程创建成功后,打开发现两个的目录结构有很大不同.si ...