洛谷 P2730 魔板 Magic Squares
题目背景
在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:
1 2 3 4
8 7 6 5
题目描述
我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。
这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):
“A”:交换上下两行;
“B”:将最右边的一列插入最左边;
“C”:魔板中央四格作顺时针旋转。
下面是对基本状态进行操作的示范:
A: 8 7 6 5
1 2 3 4
B: 4 1 2 3
5 8 7 6
C: 1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。
你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。
输入输出格式
输入格式:
只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。
输出格式:
Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。
输入输出样例
2 6 8 4 5 7 3 1
7
BCABCCB
说明
题目翻译来自NOCOW。
USACO Training Section 3.2
思路:见代码。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 5e4 + , M = 165e5;
const int G[][]={{,,,,,,,,}, //操作A:交换上下两行
{,,,,,,,,}, //操作B:将最右边的一列插入最左边
{,,,,,,,,}};//操作C:魔板中央四格作顺时针旋转
//我们可以用一个常量数组来简单地表示ABC三种操作
//即经过这一次操作后,现在状态中的第i个位置是有原先的哪一个位置变换来的
int h[N][],a[],pf[N][];
char stk[N];
int t,w=,x,edt,now,top;
bool vis[M]; //用于判重的bool数组
int main(){
for(int i=;i<=;++i){
scanf("%d",&x);
edt=(edt<<)+x-;
}
//同样将目标状态转换为八进制数,便于我们直接判断
for(int i=;i<=;++i)
now=(now<<)+(h[][i]=i-);
//“<< 3”即表示位运算的右移三位,也就是乘以8
vis[now]=true; //注意初始状态也要标记为已经搜索过
if(now==edt)
return puts(""), ;
//注意如果初始状态和目标状态相同应直接退出
while((t++)<w){
for(int i=;i<;++i){
//对于答案中的操作字典序问题,我们考虑按照操作ABC的顺序搜索
//这样先搜索到的一定是字典序最小的
now=;
for(int j=;j<=;++j)
now=(now<<)+(a[j]=h[t][G[i][j]]);
//计算经过转换后的状态
if(vis[now]) continue; //判重
vis[now]=true;
pf[++w][]=t;
pf[w][]=i+'A';
//因为题目中要求输出操作序列
//记录队列中每一个元素是由之前的哪一个元素、经过哪一个操作转换来的
//然后按着当前搜到的目标状态倒着找回去,再顺着输出操作就是答案了
h[w][]=h[t][]+;
for(int j=;j<=;++j)
h[w][j]=a[j];
if(now==edt){ //转换到了目标状态
printf("%d\n",h[w][]);
x=w;
while(pf[x][]){
stk[++top]=pf[x][];
x=pf[x][];
}
//数组stk即记录转换到目标状态依次进行的操作
for(int i=top;i>=;--i)
putchar(stk[i]);
return ;
}
}
}
return ;
}
洛谷 P2730 魔板 Magic Squares的更多相关文章
- 洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷 - P2730 - 魔板 Magic Squares - bfs
写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- P2730 魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- P2730 魔板 Magic Squares (搜索)
题目链接 Solution 这道题,我是用 \(map\) 做的. 具体实现,我们用一个 \(string\) 类型表示任意一种情况. 可以知道,排列最多只有 \(8!\) 个. 然后就是直接的广搜了 ...
- 哈希+Bfs【P2730】 魔板 Magic Squares
没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...
- 【简●解】 LG P2730 【魔板 Magic Squares】
LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
随机推荐
- jquery 终止循环
jQuery中each类似于javascript的for循环 但不同于for循环的是在each里面不能使用break结束循环,也不能使用continue来结束本次循环,想要实现类似的功能就只能用ret ...
- 2019-02-25 SQL:cast(itemvalue as decimal(19,4))
1.Operand data type nvarchar(max) is invalid for sum operator 要转换格式 2.Conversion failed when convert ...
- 紫书 例题8-2 UVa 11605(构造法)
这道题方法非常的巧妙, 两层的n*n, 第一层第I行全是第I个国家, 第二层的第j列全是第j个国家.这样能符合题目的条件.比如说第1个国家, 在第一层的第一行全是A, 然后在第二层的第一行就有ABCD ...
- php给图片加入文字水印
PHP对图片的操作用到GD库.这里我们介绍怎样给图片加入文字水印. 大致分为四步: 1.打开图片 2.操作图片 3.输出图片 4.销毁图片 以下我们上代码来详细解说每步的实现过程: <? php ...
- Creating new web parts kentico 10
Developing web parts https://docs.kentico.com/k10/custom-development/developing-web-parts Web parts ...
- Oracle11g数据库导入Oracle10g数据库操作笔记
一.在11g服务器上,使用expdp命令备份数据 EXPDP USERID='SYS/sys@daggis as sysdba' schemas=oa directory=DATA_PUMP_DIR ...
- Oracle RAC 实施
第 1 步 — 确定项目范围 理由 我们实施 Oracle RAC 是为了使我们的应用程序可伸缩和高度可用,以及为我们的客户提供更可靠的服务. 目标/可交付产品 该项目的最终产品将是一个新的 Orac ...
- 头像文件上传 方法一:from表单 方法二:ajax
方法一:from表单 html 设置form表单,内包含头像预览div,内包含上传文件input 设置iframe用来调用函数传参路径 <!--表单提交成功后不跳转处理页面,而是将处理数据返回给 ...
- 解决win8.1下sql配置iis的问题
在配置iis8.5时,ISAPI和CGI限制中没有ASP.NET v4.0.30319, 所以要注册.net 4.0 注册方法为在“运行”中输入cmd,然后在命令行中输入: C:\WINDOWS\Mi ...
- 2019Pycharm激活方法
1.将“0.0.0.0 account.jetbrains.com”添加到hosts文件中 2.打开http://idea.lanyus.com/ 3.获取激活码,粘贴到第二个选项中 亲测可用.