关于逆元&&lucas定理
lucas是求组合数C(m,n)%p,有一个公式:C(m,n) = C(m/p,n/p)*C(m%p,n%p)。
(a*b)%c==a%c*b%c,但是(a/b)%c!=a%c/b%c,所以我们要算b在c意义下的乘法逆元。
一个线性求乘法逆元。a[i] = (p - p / i) * a[p % i] % p;或者是费马小定理,i在p下的逆元就是i^(p - 2)。然后从后往前推。
两种代码:
第一种:
for(int i=;i<=n+m;i++)
a[i]=(p-p/i)*a[p%i]%p;
for(int i=2;i<=n+m;i++)
a[i]=a[i-1]*a[i]%p;
第二种:
for(int i = ;i <= n;i++)
sum[i] = sum[i - ] * i % p;//阶乘
inv[k] = pow(sum[k],p - );
for(int i = k - ;i >= ;i--)
{
inv[i] = inv[i + ] * (i + ) % p;//阶乘逆元
}
然后是lucas:
int lucas(int x,int y)
{
if(x < y) return ;
else if(x < p) return sum[x] * inv[y] * inv[x-y] % p;
else return lucas(x/p,y/p) * lucas(x%p,y%p) % p;
}
关于逆元&&lucas定理的更多相关文章
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)
Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...
- 【BZOJ】2982: combination(lucas定理+乘法逆元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2982 少加了特判n<m return 0就wa了QAQ lucas定理:C(n, m)%p=( ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- 【转】Lucas定理 & 逆元学习小结
(From:离殇灬孤狼) 这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了.比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了. 对于一 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- 古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用
/* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti} ...
随机推荐
- TensorFlow学习---入门(一)-----MNIST机器学习
参考教程:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html 数据下载地址:http://wiki.jikexueyuan.com ...
- JS——百度背景图
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- plsql developer连接oracle数据库
1.下载安装PLSQL Developer12 访问PLSQL Developer官网https://www.allroundautomations.com/bodyplsqldevreg.html, ...
- [系统资源攻略]CPU使用率和负载
我们在搞性能测试的时候,对后台服务器的CPU利用率监控是一个常用的手段.服务器的CPU利用率高,则表明服务器很繁忙.如果前台响应时间越来越大,而后台CPU利用率始终上不去,说明在某个地方有瓶颈了,系统 ...
- Beauty of Array ZOJ - 3872(思维题)
Edward has an array A with N integers. He defines the beauty of an array as the summation of all dis ...
- C++中的各种进制转换函数汇总及学习
一.指定格式输出 1.C中指定格式输出 printf(); //按八进制格式输出,保留5位高位补零 printf(); //按十进制格式输出,保留3位高位补零 printf(); //按十六进制格式输 ...
- mongodb数据库的导出与导入
数据库的导出 导出类型为json,数据库:mapdb,集合:bike 字段:bikeId,lat,lng,current_time,source ,条件为source字段为ofo第一条数据 mongo ...
- hdu2008 数值统计【C++】
数值统计 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- [cogs736][网络流24题#13]星际转移[网络流,网络判定]
将一个空间站分为天数个点,每次枚举天数,每增加一天就把对应天数的边连上,用网络流判定可行性,即-判断最大流是否不小于k,注意编号不要错位.通过此题,可见一些网络流题目需要用到网络判定方法,但虽然答案具 ...
- Spring——BeanFactory
Spring容器 什么是Spring容器 Spring容器是Spring的核心,它可以创建对象,把他们关联在一起,配置各个对象,并管理每个对象的整个生命周期.Spring容器使用依赖注入(DI)来管理 ...