BZOJ 2560(子集DP+容斥原理)
2560: 串珠子
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 757 Solved: 497
[Submit][Status][Discuss]
Description
现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。
Input
标准输入。输入第一行包含一个正整数n,表示珠子的个数。接下来n行,每行包含n个非负整数,用空格隔开。这n行中,第i行第j个数为ci,j。
Output
标准输出。输出一行一个整数,为连接方案数对1000000007取模的结果。
Sample Input
0 2 3
2 0 4
3 4 0
Sample Output
HINT
对于100%的数据,n为正整数,所有的ci,j为非负整数且不超过1000000007。保证ci,j=cj,i。每组数据的n值如下表所示。
题解
这题是一个状压DP,或者说子集DP。。
设计两个数组,f[i]代表构成一个状态为i的连通图的方案数。
g[i]代表构成一个状态为i的图(不保证联通)的方案数。
然后g[i]可以枚举i中的每一个有序点对对应的a[i][j]+1的乘积求出。
比如i在二进制下为1011,所以g[i]就是a[1][2]*a[1][4]*a[2][4];
那么f[i]怎么求呢?可以用容斥。
当前点集为联通图的方案数等于总方案数-一个子集是连通图的方案数*这个子集的补集不保证是连通图的方案数。
那么我们枚举子集就可以了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const long long mod=1e9+;
const long long N=;
long long n,a[N][N],g[<<],f[<<];
long long lowbit(long long x){
return x&-x;
}
int main(){
scanf("%lld",&n);
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++){
scanf("%lld",&a[i][j]);
}
for(long long i=;i<=(<<n)-;i++){
g[i]=;
for(long long j=;j<=n;j++){
if((<<j-)&i){
for(long long k=j+;k<=n;k++){
if((<<k-)&i){
g[i]=(g[i]*(a[j][k]+))%mod;
}
}
}
}
f[i]=g[i];
long long now=i^lowbit(i);
for(long long j=now;j;j=(j-)&now){
f[i]=((f[i]-f[i^j]*g[j])%mod+mod)%mod;
}
}
printf("%lld",f[(<<n)-]);
return ;
}
BZOJ 2560(子集DP+容斥原理)的更多相关文章
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)
明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- [BZOJ4416][SHOI2013]阶乘字符串(子集DP)
怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
- 【bzoj2339】[HNOI2011]卡农 dp+容斥原理
题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...
- hdu 5823 color II —— 子集DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...
- 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...
随机推荐
- XML教程!
什么是XML? XML是指可扩展标记语言(eXtensible Markup Language),它是一种标记语言,很类似HTML.它被设计的宗旨是传输数据,而非显示数据.XML标签没有被预定义,需要 ...
- sklearn学习4----预处理(1)标准化
一.[标准化]scale: 1.导入模块 from sklearn.preprocessing import scaler 2.作用:直接将给定数据进行标准化 3.使用代码 X_scaled=sca ...
- [置顶]
献给写作者的 Markdown 新手指南
作者:http://jianshu.io/p/q81RER 出处:http://jianshu.io/p/q81RER 献给写作者的 Markdown 新手指南 简书 「简书」作为一款「写作软件」在诞 ...
- 窗口管理工具 screen
简介 Screen是一款用于命令行终端切换的自由软件 用户可以通过该软件同时连接多个本地或远程的命令行会话,并在其间自由切换 GNU Screen可以看作是窗口管理器的命令行界面版本 它提供了统一的管 ...
- poj 3254 Corn Fields (状压dp)(棋盘dp)
状压dp入门题 因为当前行的状态只和上一行有关 所以可以一行一行来做 因为m <= 12所以可以用二进制来表示放了或者没有放 0表示没放,1表示放 f[i][state]表示第i行状态为stat ...
- C# 发布APP修改APP图标以及名称
很多时候,我们用C#编程后,都要对我们的上位机生成的图标跟名字进行修改,下面我就 VS2015 怎么修改做个说明. 1.打开项目属性 2.打开应用程序的属性界面,对相应的地方进行修改就可以了 3.修改 ...
- 【codeforces 229C】Triangles
[题目链接]:http://codeforces.com/problemset/problem/229/C [题意] 给你一张完全图; 然后1个人从中选择m条边; 然后另外一个人从中选择剩余的n*(n ...
- MyBatis初始化
1. 准备工作 为了看清楚MyBatis的整个初始化过程,先创建一个简单的Java项目,目录结构如下图所示: 1.1 Product 产品实体类 public class Product { priv ...
- JDBC、事务和连接池
一:JDBC 1.什么是JDBC JDBC(Java Data Base Connectivity)SUN公司提供的一套操作数据库的标准规范.具体来讲是一种用于执行SQL语句的Java API,为多种 ...
- org.apache.hadoop.ipc.Client: Retrying connect to server
这个问题导致jps查看结点进程时发现找不到NodeManager或一段时间后消失,网上查找了很多博客,因hadoop版本不一样且出错的原因也可能不同,所以找了老半天. 步骤:jps --> 看l ...