BZOJ 2560(子集DP+容斥原理)
2560: 串珠子
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 757 Solved: 497
[Submit][Status][Discuss]
Description
现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。
Input
标准输入。输入第一行包含一个正整数n,表示珠子的个数。接下来n行,每行包含n个非负整数,用空格隔开。这n行中,第i行第j个数为ci,j。
Output
标准输出。输出一行一个整数,为连接方案数对1000000007取模的结果。
Sample Input
0 2 3
2 0 4
3 4 0
Sample Output
HINT
对于100%的数据,n为正整数,所有的ci,j为非负整数且不超过1000000007。保证ci,j=cj,i。每组数据的n值如下表所示。
题解
这题是一个状压DP,或者说子集DP。。
设计两个数组,f[i]代表构成一个状态为i的连通图的方案数。
g[i]代表构成一个状态为i的图(不保证联通)的方案数。
然后g[i]可以枚举i中的每一个有序点对对应的a[i][j]+1的乘积求出。
比如i在二进制下为1011,所以g[i]就是a[1][2]*a[1][4]*a[2][4];
那么f[i]怎么求呢?可以用容斥。
当前点集为联通图的方案数等于总方案数-一个子集是连通图的方案数*这个子集的补集不保证是连通图的方案数。
那么我们枚举子集就可以了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const long long mod=1e9+;
const long long N=;
long long n,a[N][N],g[<<],f[<<];
long long lowbit(long long x){
return x&-x;
}
int main(){
scanf("%lld",&n);
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++){
scanf("%lld",&a[i][j]);
}
for(long long i=;i<=(<<n)-;i++){
g[i]=;
for(long long j=;j<=n;j++){
if((<<j-)&i){
for(long long k=j+;k<=n;k++){
if((<<k-)&i){
g[i]=(g[i]*(a[j][k]+))%mod;
}
}
}
}
f[i]=g[i];
long long now=i^lowbit(i);
for(long long j=now;j;j=(j-)&now){
f[i]=((f[i]-f[i^j]*g[j])%mod+mod)%mod;
}
}
printf("%lld",f[(<<n)-]);
return ;
}
BZOJ 2560(子集DP+容斥原理)的更多相关文章
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)
明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- [BZOJ4416][SHOI2013]阶乘字符串(子集DP)
怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
- 【bzoj2339】[HNOI2011]卡农 dp+容斥原理
题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...
- hdu 5823 color II —— 子集DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5823 看博客:http://www.cnblogs.com/SilverNebula/p/5929550. ...
- 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...
随机推荐
- Unity中 Animator 与Animation 区别
①Animation和Animator 虽然都是控制动画的播放,但是它们的用法和相关语法都是大有不同的.Animation 控制一个动画的播放,而Animator是多个动画之间相互切换,并且Anima ...
- pythone 学习笔记(粗略)
文档目录 概述 安装 基本语法 数据结构 4.1 数字和字符串类型 4.2 元祖 4.3 列表 4.4 字典 流程语句 5.1 分支结构 5.2 逻辑运算符(if) 5.3 循环 5.3.1 for ...
- Unity的Json解析<二>–写Json文件
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50378805 作者:car ...
- 异构关系数据库(Sqlserver与MySql)之间的数据类型转换参考
一.SqlServer到MySql的数据类型的转变 编号 SqlServer ToMySql MySql 1 binary(50) LONGBLOB binary 2 bit CHAR(1) bit ...
- 聚类算法学习-kmeans,kmedoids,GMM
GMM参考这篇文章:Link 简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概 ...
- css样式中@import引入样式
css样式中@import引入样式 学习了:http://www.cnblogs.com/zbo/archive/2010/11/17/1879590.html
- Cocos2d-x 3.0多线程异步资源载入
Cocos2d-x从2.x版本号到上周刚刚才公布的Cocos2d-x 3.0 Final版,其引擎驱动核心依然是一个单线程的"死循环".一旦某一帧遇到了"大活儿" ...
- 基础数位DP小结
HDU 3555 Bomb dp[i][0] 表示含 i 位数的方案总和. sp[i][0] 表示对于位数为len 的 num 在区间[ 10^(i-1) , num/(10^(len-i)) ] 内 ...
- HTML打开摄像头,进行拍照上传
html代码 <%@ page language="java" contentType="text/html; charset=utf-8" pageEn ...
- HDU 5353 Average
Problem Description There are n soda sitting around a round table. soda are numbered from 1 to n and ...