https://www.luogu.org/problem/show?pid=1548#sub

题目描述

设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%)

求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。

例如:当 N=2, M=3时: 

正方形的个数有8个:即边长为1的正方形有6个;

边长为2的正方形有2个。

长方形的个数有10个:

即2*1的长方形有4个:

          1*2的长方形有3个:

          3*1的长方形有2个:

          3*2的长方形有1个:

如上例:输入:2 3

输出:8 10

输入输出格式

输入格式:

N和M

输出格式:

正方形的个数与长方形的个数

输入输出样例

输入样例#1:

2 3
输出样例#1:

8 10
 #include <algorithm>
#include <cstdio> using namespace std; int n,m,ans1,ans2; int main()
{
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=;i<=n;i++) ans1+=(m-i+)*(n-i+);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(i!=j) ans2+=(n-i+)*(m-j+);
printf("%d %d",ans1,ans2);
return ;
}

洛谷——P1548 棋盘问题的更多相关文章

  1. 洛谷 P1548 棋盘问题

    题目描述 设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%) 求出该棋盘中包含有多少个正方形.多少个长方形(不包括正方形). 例如:当 N=2, M= ...

  2. 2017普及组D1T3 洛谷P3956 棋盘

    2017普及组D1T3 洛谷P3956 棋盘 原题 题目描述 有一个m×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在 ...

  3. 洛谷 P3956 棋盘 解题报告

    P3956 棋盘 题目描述 有一个\(m×m\)的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能 ...

  4. 洛谷P1436 棋盘分割

    洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...

  5. 洛谷 P1436 棋盘分割 解题报告

    P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...

  6. 洛谷P1549 棋盘问题(2)

    P1549 棋盘问题(2) 题目描述 在N*N的棋盘上(1≤N≤10),填入1,2,…,N*N共N*N个数,使得任意两个相邻的数之和为素数. 例如:当N=2时,有: 其相邻数的和为素数的有: 1+2, ...

  7. 洛谷——P1549 棋盘问题(2)

    P1549 棋盘问题(2) 搜索||打表 #include<cstdio> #include<cstring> #include<iostream> #includ ...

  8. 洛谷 P3956 棋盘

    题目描述 有一个m ×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上 ...

  9. 洛谷P1169 棋盘制作(悬线法)

    题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...

随机推荐

  1. 添加 validate 验证规则

    上篇文章链接:http://blog.csdn.net/chenmoimg_/article/details/71191476 修改 msg.js $.extend($.validator.messa ...

  2. 洛谷—— P1629 邮递员送信

    https://www.luogu.org/problem/show?pid=1629 题目描述 有一个邮递员要送东西,邮局在节点1.他总共要送N-1样东西,其目的地分别是2~N.由于这个城市的交通比 ...

  3. 洛谷——P2446 [SDOI2010]大陆争霸

    https://www.luogu.org/problem/show?pid=2446#sub 题目背景 在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的克里斯国.两个国家的人民分别 ...

  4. JavaScript提高:006:ASP.NET使用easyUI TABS标签updatepanel

    前文使用了easyui的tab标签.切换问题,使用了session保存当前选中页,然后页面总体刷新时再切换至上次保存页码.那么使用updatepanel后,这个问题就非常好攻克了.http://blo ...

  5. 转:关于ios 推送功能的终极解决

    刚刚做了一个使用推送功能的应用 遇到了一些问题整的很郁闷 搞了两天总算是弄明白了 特此分享给大家 本帖 主要是针对产品发布版本的一些问题 综合了网上一些资料根据自己实践写的 不过测试也可以看看 首先要 ...

  6. jQuery11 data() : 数据缓存

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  7. vim插件之ack

    这个插件其实是实现vim内部搜索功能的今天在学习vim搜索的时候,遇到了一个ack.vim的插件,这个插件给我们提供了一个并行于系统命令grep的搜索命令Ack 它的下载地址是 https://git ...

  8. Zabbix自动发现与自动注册.

    一, 自动发现与自动注册 自动发现? 当场景中出现要添加很多台主机的时候,一台台添加难免太过于繁琐,zabbix提供自动注册,自动发现,可以实现主机的批量添加, zabbix的发现包括三种类型: # ...

  9. python3 requests 模块 json参数和data参数区别

    json 表示使用application/json方式提交请求 data 使用application/form-urlencode方式提交请求

  10. 00084_Map接口

    1.Map接口概述 通过查看Map接口描述,发现Map接口下的集合与Collection接口下的集合,它们存储数据的形式不同. (1)Collection中的集合,元素是孤立存在的(理解为单身),向集 ...