https://www.luogu.org/problem/show?pid=1548#sub

题目描述

设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%)

求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。

例如:当 N=2, M=3时: 

正方形的个数有8个:即边长为1的正方形有6个;

边长为2的正方形有2个。

长方形的个数有10个:

即2*1的长方形有4个:

          1*2的长方形有3个:

          3*1的长方形有2个:

          3*2的长方形有1个:

如上例:输入:2 3

输出:8 10

输入输出格式

输入格式:

N和M

输出格式:

正方形的个数与长方形的个数

输入输出样例

输入样例#1:

2 3
输出样例#1:

8 10
 #include <algorithm>
#include <cstdio> using namespace std; int n,m,ans1,ans2; int main()
{
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=;i<=n;i++) ans1+=(m-i+)*(n-i+);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(i!=j) ans2+=(n-i+)*(m-j+);
printf("%d %d",ans1,ans2);
return ;
}

洛谷——P1548 棋盘问题的更多相关文章

  1. 洛谷 P1548 棋盘问题

    题目描述 设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%) 求出该棋盘中包含有多少个正方形.多少个长方形(不包括正方形). 例如:当 N=2, M= ...

  2. 2017普及组D1T3 洛谷P3956 棋盘

    2017普及组D1T3 洛谷P3956 棋盘 原题 题目描述 有一个m×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在 ...

  3. 洛谷 P3956 棋盘 解题报告

    P3956 棋盘 题目描述 有一个\(m×m\)的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能 ...

  4. 洛谷P1436 棋盘分割

    洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...

  5. 洛谷 P1436 棋盘分割 解题报告

    P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...

  6. 洛谷P1549 棋盘问题(2)

    P1549 棋盘问题(2) 题目描述 在N*N的棋盘上(1≤N≤10),填入1,2,…,N*N共N*N个数,使得任意两个相邻的数之和为素数. 例如:当N=2时,有: 其相邻数的和为素数的有: 1+2, ...

  7. 洛谷——P1549 棋盘问题(2)

    P1549 棋盘问题(2) 搜索||打表 #include<cstdio> #include<cstring> #include<iostream> #includ ...

  8. 洛谷 P3956 棋盘

    题目描述 有一个m ×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上 ...

  9. 洛谷P1169 棋盘制作(悬线法)

    题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...

随机推荐

  1. Metro界面的真正意义

    昨天去客户那给安装防火墙和交换机,因为客户和我们公司签订了维保的合同,然后我们公司两个人去了客户那跟客户沟通也去顺路去做巡检. 客户之前跟我们公司采购了一台DELL的PC服务器,预装了win serv ...

  2. gcc---C/C++ 编译器

    gcc命令使用GNU推出的基于C/C++的编译器,是开放源代码领域应用最广泛的编译器,具有功能强大,编译代码支持性能优化等特点.现在很多程序员都应用GCC,怎样才能更好的应用GCC.目前,GCC可以用 ...

  3. 紫书 例题 9-4 UVa 116 ( 字典序递推顺序)

    这道题在递推方式和那个数字三角形有一点相像,很容易推出来 但是这道题要求的是字典序,这里就有一个递推顺序的问题 这里用逆推,顺推会很麻烦,为什么呢? 如果顺推的话,最后一行假设有种情况是最小值,那么你 ...

  4. 【ios开发学习 - 第二课】iOS项目文件夹结构

    文件夹结构 AppDelegate Models Macro General Helpers Vendors Sections Resources   一个合理的文件夹结构首先应该是清晰的.让人一眼看 ...

  5. hdoj-1421-搬寝室【DP】

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  6. session timer(一)

    功能介绍 SIP并没有为所建立的会话定义存活机制. 虽然用户代理能够通过会话特定的机制推断会话是否超时,可是代理server却做不到这点. 如此一来.代理server有时会无法推断会话是否还是活动的. ...

  7. Shiro结合Redis解决集群中session同步问题

    pom.xml文件中引入redis的依赖 在application.xml配置redis: <bean id="jedisConnectionFactory" class=& ...

  8. Ubuntu 12.04使用演示

    今年年初,发布了Ubuntu 12.04(代号Precise Pangolin),但正式版预计将于2012年的4月底发布,作者对最新版本的ubuntu做了试用,先将操作视频与大家分享.更多内容请关注本 ...

  9. cf1089d Distance Sum

    题目大意 给一个有n个点,m条边的无向连通图,求所有点两两之间的最短路.$(2<=n<=10^5;n-1<=m<=n+42)$ solution 我们注意到$m-n+1$很小. ...

  10. VMwarep挂载镜像及配置本地Yum源

    1.挂载镜像: *. 通过mount命令         linux mount挂载设备(u盘,光盘,iso等 )使用说明 *.  通过VMware的控制页面手工挂载 1.1    打开Vmware软 ...