Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000
 
 
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。 
 
题解
先膜一波XYZ大神
这道题首先我们要想好状态数组含义
由于这是个抽卡游戏,每抽到一张卡其他卡的概率都会改变
所以我们要消除这种不方便,故设f[i][j]表示前i张卡在游戏中剩下j轮被选择的概率
对于第i-1张卡,考虑它对前i张的贡献:要么在剩下j轮都没被打出,要么它一定在某一轮中放了技能
所以这张卡对前i张卡的影响是
j轮都没打出:f[i][j]+=f[i-1][j]*pow(1-p[i-1],j)
某一轮打出了:f[i][j-1]+=f[i-1][j]*(1-pow(1-p[i-1],j));
所以f[i][j]的递推公式是:f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));
然后把所有f[i][j]乘上在j轮中某一轮打出的概率(1-pow(1-p[i],j)),再乘伤害d[i]然后累加,得到的就是最后答案
代码见下
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=;
const int R=;
int t,n,r,d[N];
double p[N],k[N],f[N][R];
inline void intn()
{
for(int i=;i<N;i++)p[i]=k[i]=;
memset(d,,sizeof(d));
}
int main()
{
scanf("%d",&t);
while(t--)
{
intn();
scanf("%d%d",&n,&r);
for(int i=;i<=n;i++)
scanf("%lf%d",&p[i],&d[i]);
for(int i=;i<N;i++)
for(int j=;j<R;j++)
f[i][j]=;
double ans=;
f[][r]=;
for(int i=;i<=n;i++)
for(int j=;j<=r;j++)
{
f[i][j]=f[i-][j]*pow(-p[i-],j)+f[i-][j+]*(-pow(-p[i-],j+));
ans+=f[i][j]*(-pow(-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
}

[BZOJ4008]亚瑟王的更多相关文章

  1. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  2. 【bzoj4008 hnoi2015】 亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  3. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  4. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  5. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  6. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  7. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  8. 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]

    亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...

  9. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

随机推荐

  1. Python资源汇总

    Python 目录: 管理面板 算法和设计模式 反垃圾邮件 资产管理 音频 验证 构建工具 缓存 ChatOps工具 CMS 代码分析和Linter 命令行工具 兼容性 计算机视觉 并发和并行性 组态 ...

  2. CAS单点登录(SSO)服务端的部署和配置---连接MySQL进行身份认证

    一.修改系统host,加入 127.0.0.1 server.test.com127.0.0.1 client1.test.com127.0.0.1 client2.test.com 二.安装grad ...

  3. WebSocket学习总结

    一 .websocket 已解决      但是websocket延伸出来的网络编程还有好多知识点没有清理.主要的流程和实现方式已经大概了解清楚,下面从学习的进度思路来一点点复习.        网络 ...

  4. 从点击到呈现 — 详解一次HTTP请求

    一般来说,很多的参考资料上面都会说,http 是一个基于请求/响应的工作模式,然后画出一张浏览器和服务器的 b/s 结构图,再画上两个箭头,表示请求和响应,应该说这么解释是易懂的,一般也是够清楚的,但 ...

  5. DTCMS插件的制作实例电子资源管理(三)前台模板页编写

    总目录 插件目录结构(一) Admin后台页面编写(二) 前台模板页编写(三) URL重写(四) 本实例旨在以一个实际的项目中的例子来介绍如何在dtcms中制作插件,本系列文章非入门教程,部分逻辑实现 ...

  6. python课程day_2-->总结-->字符串功能

    =======================课程大纲=======================> 基本数据类型 - 整数 - 布尔值 - 字符串 - 列表 - 元组 - 字典 - 集合 工 ...

  7. node.js 中回调函数callback(转载),说的很清楚,看一遍就理解了

    最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: 复制代码 代码如下: app.use(fu ...

  8. Linux系统管理10——进程和计划任务管理

    Linux系统管理10——进程和计划任务管理 一.程序和进程的关系 1.程序 ·保存在硬盘.光盘等介质中的可执行代码和数据 ·静态保存的代码 2.进程 ·在CPU及内存中运行的程序代码 ·动态执行的代 ...

  9. 漫话JavaScript与异步·第二话——Promise:一诺千金

    一.难以掌控的回调 我在第一话中介绍了异步的概念.事件循环.以及JS编程中可能的3种异步情况(用户交互.I/O.定时器).在编写异步操作代码时,最直接.也是每个JSer最先接触的写法一定是回调函数(c ...

  10. 搭建后台页面布局利用属性target 属性

    HTML 5 <form> target 属性 HTML 5 <form> 标签 实例 提交一个在新窗口中打开的表单: <form action="demo_f ...